Design and fabrication of dioxyphenylcoumarin substituted cyclotriphosphazene compounds photodiodes

Elsayed Elgazzara, A. Dereb, Furkan Özenc, Kenan Koranc, Abdullah G. Al-Sehemd,e,f, Ahmed A. Al-Ghamdig, Ahmet Orhan Görgülüc, F. El-Tantawya, F. Yakuphanoglub,*

a Department of Physics, Faculty of Science, Suez Canal University, Ismailia, Egypt
b Department of Physics, Faculty of Science, Firat University, Elazığ, Turkey
c Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
d Research Center for Advanced Materials Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
e Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
f Department of Chemistry, Faculty of Science, Fırat University, Elazığ, Turkey
g Department of Physics, Faculty of Science, Suez Canal University, Ismailia, Egypt

Keywords: Photodiode, Sensor, Cyclotriphosphazene Dioxyphenylcoumarin-phosphazene

\textbf{A B S T R A C T}

The present study introduces cyclotriphosphazene compounds substituted by dioxyphenylcoumarin as a photodiode application. Firstly, 7,8-dihydroxy-3-(3-methylphenyl)coumarin (1b) has been obtained by conventional as well as microwave assisted methods. Novel optoelectronic device characteristics for both mono and disubstituted dioxyphenylcoumarin bearing cyclotriphosphazene compounds (HCP-2 and HCP-4) have been synthesized from the reactions of cyclotriphosphazene containing dioxyphenyl (HCP-1 and HCP-3) with compound 1b, respectively. The structures of compounds HCP 1–4 were identified by using elemental analysis, 1H, 13C-APT, 31P NMR and 2D HETCOR NMR and FT-IR spectroscopy methods. The Al/HCP-2/p-Si/Al and Al/HCP-4/-p-Si/Al photodiodes properties have been investigated from current-voltage (I − V) and capacitance-voltage (C − V) measurements. The electrical parameters of the prepared diodes such as ideality factor \(n\) and series resistance \(R_s\), were investigated in dark and at room temperature from (I − V) curve and Nord’s method. As can be seen, the Al/HCP-2/p-Si/Al diode of high rectification factor \(RR\) and with ideality factor greater than unity. The influence of light illuminations on the diode shows that the device can be used as photodiode with good efficiency. The barrier height \(\phi_b\) and series resistance \(R_s\), have been calculated from the capacitance-voltage (C − V) and conductance-voltage (G − V) measurements under various applied frequencies from 10 kHz to 1 MHz. The high difference in the results of barrier height obtained from I-V and C-V calculations confirm the influence of series resistance and localized states on transport of charge carriers and the photodiode performance.

\section{Introduction}

Phosphazene derivatives are a class of cyclic and polymeric molecules which contain alternating phosphorus and nitrogen atoms bound by alternating single and double bonds in their skeleton [1]. Substituted cyclophosphazenes with phosphorus-carbon bonds have been synthesized from bicyclophosphazenes by Friedel Crafts substitution reactions and by reactions with nucleophiles such as primary, secondary amines, aryloxides or alkoxides reagents [2-4]. One of the most important property for cyclophosphazene compounds and its derivatives is the substitution reactions exchange between organic groups and phosphorus atoms. Cyclophosphazenes with nucleophilic substitution reactions have several advantages with high thermal and chemical stability. When organic groups are bonded at each phosphorus atom, the phosphazene skeleton is stabilized against hydrolytic attack [1,5]. The phosphazenes, particularly the substituted phosphazene derivatives containing organic or inorganic side groups, have generated considerable research interest in recent years because of their unusual physical and chemical properties such as organic light emitting diodes and fluorescence sensor [6-8], cathode material for rechargeable lithium batteries [9] and flame retardants [10].

In this research we study the cyclotriphosphazene compounds as a new photoconducting material. Although some novel cyclophosphazene structures and their physical properties have been reported [11-...]

* Corresponding author.

\textit{E-mail address:} fihan@hotmail.com (F. Yakuphanoglu).

http://dx.doi.org/10.1016/j.physb.2017.03.025

Received 1 March 2017; Received in revised form 15 March 2017; Accepted 16 March 2017

Available online 19 March 2017

0921-4526/© 2017 Elsevier B.V. All rights reserved.
14], there is no study about the optoelectronic properties of the cyclotriphosphazene compounds bearing dioxyphenylcoumarin groups. The aim of this work is to determine how the photodiode prepared from both mono and di substituted dioxyphenylcoumarin bearing cyclotriphosphazene compounds (HCP-2 and HCP-4) change and how its characteristics alter regarding with the number of coumarin attachment.

2. Experimental techniques

2.1. Materials and methods

2. Experimental techniques

attachment.

HCP-1 and HCP-3 were synthesized as defined by Carriedo et al. [18,19].

2.2. Synthesis

2-(2,3,4-trimethoxyphenyl)-1-(3-(methylphenyl))acrylonitrile (1a) was synthesized and purified according to methods in the literature [15–17]. Cyclotriphosphazene compounds containing dioxybiphenyl (HCP-1) and HCP-3 were synthesized as defined by Carriedo et al. [18,19].

2.2.1. Synthesis of 7,8-dihydroxy-3-(3-methylphenyl)coumarin (1b)

A sealed vessel containing a mixture of 2-(2,3,4-trimethoxyphenyl)-1-(3-(methylphenyl))acrylonitrile (1a) (0.4 g, 1.3 mmol), an appropriate silica gel (15 g) and pyridinium hydrochloride (5 g) was stirred at room temperature, it was treated with acidi

2-(2,3,4-trimethoxyphenyl)-1-(3-(methylphenyl))acrylonitrile (1a) (0.28 g, 1.04 mmol) in 25 mL of xylene was slowly added to the stirred solution at 0 °C. After the reaction mixture was continued for 25 min at 0 °C, it was refluxed in xylene for 48 h. After stopping the reaction, the mixture was filtered to separate the formed sodium chloride. Xylene was evaporated at rotary evaporator. The solid product was resolved in ethyl acetate and then precipitated into n-hexane (200 mL). The crude solid was filtered and then dried. The crude product was purified to column chromatography using chloroform as mobile phase. The target product HCP-4 was obtained as pure white solid. Yield=46% (0.2 g). Anal. Calc. for C40H26N3O8P3 (MW=851.62 g/mol): C, 62.05; H, 3.31; N, 977 ppm: 36.60 (2P, t, P(O2C12H8)), 24.65 (1P, d, P(O2C16H10)). 1H NMR (CDCl3) δ/ppm: 3.063 (3H, s, CH3), 7.02–7.3 (23H, m, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, and H17). 13C NMR (CDCl3) δ/ppm: 15.81 C1, 128.46 C2, 128.65 C3, 130.12 C4, 131.94 C5, and 21.96 C6.

2.2.2. Synthesis procedure of 2,2-bis[spiro(7,8-dioxy-3-(3-methylphenyl)coumarin)-6,6-bis[spiro(2′,2′-dioxy-1′,1′-biphenyl)] cyclotriphosphazene (HCP-4)

HCP-3 (0.35 g, 0.76 mmol) and Na2CO3 (1.28 g, 12.16 mmol) were dissolved in 50 mL of dry xylene (mixture of isomers) in a 150 mL three-necked reaction flask. 7,8-dihydroxy-3-(3-methylphenyl) coumarin (1b) (0.81 g, 3.04 mmol) in 25 mL of xylene was slowly added to the stirred solution at 0 °C. After the reaction mixture was continued for 25 min at 0 °C, it was refluxed in xylene for 48 h. After stopping the reaction, the mixture was filtered to separate the formed sodium chloride. Xylene was evaporated at rotary evaporator. The solid product was resolved in 15 mL of xylene and then precipitated into n-hexane (200 mL). The crude solid was filtered and then dried. The crude product was purified to column chromatography using chloroform as mobile phase. The target product HCP-4 was obtained as pure white solid. Yield=46% (0.2 g). Anal. Calc. for C40H26N3O8P3 (MW=851.62 g/mol): C, 62.05; H, 3.31; N, 977 ppm: 36.60 (2P, t, P(O2C12H8)), 24.65 (1P, d, P(O2C16H10)). 1H NMR (CDCl3) δ/ppm: 3.063 (3H, s, CH3), 7.02–7.3 (23H, m, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, and H17). 13C NMR (CDCl3) δ/ppm: 15.81 C1, 128.46 C2, 128.65 C3, 130.12 C4, 131.94 C5, and 21.96 C6.

2.3. Fabrication of the diodes

Firstly, the native oxide layer on p-Si substrates was removed by etching of HF. The Si substrates were chemically cleaned (methanol, acetone and deionized water baths) for 10–15 min and dried with nitrogen. The solutions of HCP-2 and HCP-4 organic materials and were coated on p-Si having aluminium (Al) ohmic contact by drop coating method. After coating procedure, the films were dried at 50 °C for 10 min. Aluminium metal was evaporated on p-Si wafer to form ohmic contact. After evaporation procedure, the substrates were annealed at 570 °C for 5 min in nitrogen atmosphere. The top electrode of the diode was prepared by Al metal on the substrates with a diode contact area of 7.85×10−3 mm2. The photoresponse properties of the diodes were carried out using FYtronix Electronic Device characterization system (Scheme 1) in dark and illumination conditions. The intensity of solar light is controlled using a FYtronix Electronic Device characterization system.
3. Results and discussion

3.1. Synthesis

7,8-dihydroxy-3-(3-methylphenyl)coumarin (1b) has been obtained at good yield that from the reaction with compound 1a of pyridinium hydrochloride with using of silica gel as support material by microwave irradiation under solventless conditions. The reactions of HCP-1 with 1.1 equiv. of 7,8-dihydroxy-3-(3-methylphenyl)coumarin (1b) in the presence of Na2CO3 in dry xylene (mixture of isomers) gave 2,2-bis[spiro(7,8-dioxy-3-(3-methylphenyl)coumarin)]-4,4,6,6-bis[-spiro(2′,2′-dioxy-1′,1′-biphenyl)]cyclotriphosphazene (HCP-2).

The reactions of HCP-3 with 2.1 equiv. of 1b gave 2,2,4,4-bis[spiro(7,8-dioxy-3-(3-methylphenyl)coumarin)]-6,6-bis[spiro(2′,2′-dioxy-1′,1′-biphenyl)]cyclotriphosphazene (HCP-4).

The structures of compounds were identified by using elemental analysis, 1H, 13C-APT, 31P (only phosphazene compounds) and 2D HETCOR NMR and FT-IR spectroscopy methods. General presentation of compounds is shown in Scheme 2.

The nitrile peaks (-C≡N) in the structure of 1a were not observed at FT-IR spectra of 1b. The -OCH3 groups in the compound 1a were converted to the -OH functional groups. The presence of -OH stretching vibration in the FT-IR spectra of 1b proves that -CH3 groups in the compound 1a and converted to the -OH groups. The OH stretching vibration for 1b was showed at 3316 and 3477 cm⁻¹. The -C=O stretching vibrations, which are exhibit at 1676 cm⁻¹, is characteristic for coumarin compound. The -OCH3 groups were not observed at 1H NMR spectrum of 1b. 1H and 13C NMR spectra of 1b were showed in Fig. 1. The -OH protons in the structure of 1b (7 and 8 no. protons in the Scheme 1) were exhibited at 9.44 and 10.17 ppm.

The OH stretching vibrations in the structure of compound 1b were not observed in the FT-IR and 1H NMR spectra of compounds HCP-2 and HCP-4. The aromatic -CH stretching frequencies at the FT-IR of HCP-2 and HCP-4 were showed between 3027 and 3063 cm⁻¹. The carbonyl group in the structures of compounds HCP-2 and HCP-4 was showed at 1736 and 1738 cm⁻¹, respectively. The -P=N stretching frequencies, which are observed between 1174 and 1210 cm⁻¹, are characteristic of phosphazene compounds. The P-O-Ph stretching vibration for HCP-2 and HCP-4 was exhibited at 977 and 948 cm⁻¹.

The 31P NMR spectra for HCP-2 and HCP-4 are showed in Fig. 2 (AB2 system). There are two peaks in the 31P NMR spectra of dioxyphenylcoumarin substituted HCP-2 and HCP-4 compounds. The 31P NMR spectra for HCP-2 give two sets of peaks around δ=36.60 and 24.65 ppm in a doublet-triplet. At HCP-4 give two sets of peaks around δ=23.92 and 35.94 ppm in a doublet-triplet.

The characteristic peaks in the 1H and 13C NMR spectra of HCP-2 and HCP-4 were given in the Experimental section in detail. The 13C APT NMR spectra of HCP-2 are given in Fig. 3. The carbonyl carbon...
peaks (C=O, C15) for HCP-2 and HCP-4 was showed at 159.02, 158.80 ppm, respectively. The methyl carbon (-CH3, C22) for HCP-2 and HCP-4 was observed at 21.39 and 21.53 ppm, respectively.

In addition, the ratio of the protons integral height in the 1H NMR spectra supports the proposed structures. In addition, the places of primary, secondary and tertiary carbon atoms were supported with 13C-APT NMR technique.

3.2. I-V characteristics for Al/HCP-2/p-Si/Al and Al/HCP-4/p-Si/Al diodes

The diode characteristics for mono and di substituted dioxyphenylcoumarin bearing cyclotriphosphazene compounds (HCP-2 and HCP-4) are shown in Fig. 4. It is well known that substitution doping process is very important in increasing free charge carriers [20]. As can be seen, the Al/HCP-2/p-Si/Al diode of high rectification behaviour with rectification ratio RR of 2.15 x 10^6 at 3 V. Schottky diode parameters such as ideality factor n and barrier height \(\Phi_b \) were calculated from (I-V) characteristics curve in dark and at room temperature by using the thermionic emission theory [21–23]:

\[
I = \frac{A' A^* T}{k T} \exp \left(\frac{-\Phi_b}{k T} \right) \exp \left(-\frac{q(V - IR)}{k T} \right)
\]

where \(I \) is the current through a Schottky diode, \(V \) is the applied voltage, \(q \) is the electronic charge, \(k \) is the Boltzmann constant, \(T \) is the absolute temperature, \(R \) is the series resistance, \(n \) is the ideality factor can be calculated by using the following equation [24,25]:

\[
n = \frac{q}{k T} \frac{dV}{dI} \ln(I)
\]

\(I_s \) is the saturation current given by [26,27]:

\[
I_s = \frac{A' A^* T}{k T} \exp \left(-\frac{\Phi_b}{k T} \right)
\]

where, \(A' \) is the effective Richardson’s constant equal (32 A cm\(^{-2}\) k\(^{-2}\)) for p-type silicon, \(A \) is the effective diode area and \(\Phi_b \) is the zero bias effective barrier height is expressed by the following relation [28]:

\[
\Phi_b = \frac{k T}{q} \ln \left(\frac{A' A^* T}{I_s} \right)
\]

According to Fig. 4 it can be observed that the forward current \(I_f \) of HCP-2 compound with greater value compared with HCP-4 compound this behaviour is believed to be due to mono substituted dioxyphenylcoumarin of high chemical molecular interaction and high electron density [29,30]. The diode parameters of Al/HCP-2/p-Si/Al and Al/HCP-4/p-Si/Al devices have been estimated and presented in Table 1. Al/HCP-2/p-Si/Al shows very small saturation current \(I_s \) compared to Al/HCP-4/p-Si/Al. It is also evaluated that the ideality factor \(n \) with values greater than unity attributed by the presence of deep levels and interfacial states between organic material and semiconductor. In order to determine the values of series resistance \(R_s \) and shunt resistance \(R_{sh} \) of the photodiode in dark and at room temperature we can use the equation [31]:

\[
R_s = \frac{\partial V}{\partial I}
\]

where, \(R_s \) is the junction resistance of the diode. Fig. 5 shows \((R_s-V) \) plots for Al/HCP-2/p-Si/Al and Al/HCP-4/p-Si/Al diodes. \(R_s \) and \(R_{sh} \) for the synthesized diodes were calculated and tabulated in Table 1. It is noted from Fig. 5 that, the Al/HCP-2/p-Si/Al diode of low series resistance and high shunt resistance which indicates that the diode of
mono substituent dioxyphenylcoumarin bearing cyclotriphosphazene compound is mostly favoured by larger electron rich substituent and this is related to the arrangement of dioxyphenylcoumarin groups [30–32].

On the other hand, the barrier height ϕ_b and series resistance R_s of the photodiode can be determined by other theory known as Nord's method introduced by the equation [33]:

$$F(V) = \frac{V}{\gamma} - \frac{kT}{q} \ln \left(\frac{I(V)}{AAT^2} \right)$$

where, γ is the first integer greater than ideality factor n. $I(V)$ is the

Table 1

<table>
<thead>
<tr>
<th>photodiode</th>
<th>(I-V) Characteristics</th>
<th>Nord's model</th>
<th>(C-V) Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>ϕ_e(eV)</td>
<td>R_s(Ω)</td>
</tr>
<tr>
<td>Al/HCP–2/p-Si/Al</td>
<td>2.29</td>
<td>0.87</td>
<td>2960</td>
</tr>
<tr>
<td>Al/HCP–4/p-Si/Al</td>
<td>1.71</td>
<td>0.79</td>
<td>8883</td>
</tr>
</tbody>
</table>

Fig. 3. 13C APT NMR spectrum of HCP-2 (in CDCl$_3$).

Fig. 4. I–V Characteristics of Al/HCP-2/p-Si/Al and Al/HCP-4/p-Si/Al diodes in dark and at room temperature.

Fig. 5. Plot of R_j vs. V for Al/HCP-2/p-Si/Al and Al/HCP-4/p-Si/Al diodes in dark and at room temperature.
current obtained from the I–V characteristics. The barrier height ϕ_b of the prepared diode can be obtained from equation [34]:

$$\phi_b = F(V_o) + \frac{qV_o - kT}{q} \quad (6)$$

where $F(V_o)$ is the minimum point of $F(V)$ demonstrated in Fig. 6 and V_o is the corresponding voltage. The series resistance of the junctions can be calculated as follows [35]:

$$R_s = kT(q - n)dI(V) \quad (7)$$

where I is the corresponding current. ϕ_b and R_s of the synthesized diodes were determined and listed in Table 1. It worth to note that, the Al/HCP-2/p-Si/Al diode of low series resistance compared to other one which is consistent with the results obtained from I-V characteristics.

3.3. Photoresponse properties of Al/HCP-2/p-Si/Al and Al/HCP-4/p-Si/Al diodes

The study of photoconductivity for both mono and di substituted dioxophenylcoumarin bearing cyclotriphosphazene compounds (HCP-2 and HCP-4) under different power intensity plays a key role in optoelectronic applications [36]. It is seen in Fig. 7(a and b) that, the prepared diodes with high photocurrent response and Al/HCP-2/p-Si/Al diode with high photoconductivity and more of free carriers affected by incident light [37].

Fig. 8(a and b) shows the influence of light intensity on the prepared device conductivity. It can be seen that the current of the photodiode increase through incident of light and remain constant until turning off light reach its initial value. This is dependent on the presence of charge carriers trapped in localized states within band gap [38]. The trapped charge carriers overcome the optical gap by increasing illumination power intensity suggests that these states have significant influence on the transport mechanism [39].

It is observed from this behaviour that power intensity activate the transport of charge carriers [40]. The photodiode conductivity affected by trap centers response to the influence of various illuminations intensities this can be described according to the following relation [41]:

$$I_{Ph} = A P^m \quad (8)$$

where I_{Ph} is the photocurrent, A is a constant, P is the illumination intensity and m is an exponent. According to Fig. 9, the exponent m for Al/HCP-2/p-Si/Al and Al/HCP-4/p-Si/Al diodes were determined from the slope with values 0.6 and 1.34 respectively. The values of exponent m enhance the presence of trap centers within optical band gap which increase the photodiode conductivity [42].

3.4. (C–V), (G–V) and (Rs–V) characteristics of the prepared photodiodes

Fig. 10 (a and b) shows the influence of applied frequency varies from 10 kHz to 1 MHz on capacitance-voltage (C–V) and corrected capacitance-voltage (C_{adj}–V) of Al/HCP-2/p-Si/Al diode. It can be seen from Fig. 10 (a) that the capacitance is constant in forward region and decrease with increasing frequency in the reverse bias voltages [43]. Moreover, a peak appears at nearly -3.5 V and shifts to higher voltage with applied frequency. This behaviour can be explained by the change in transport of electric charge in depletion region or may be due to
recombination process influenced by applied alternating current voltage [44]. Fig. 10 (b) indicates the \((C_{adj}-V)\) plots for Al/HCP-2/p-Si/Al diode. The capacitance of the photodiode affected by series resistance so it can be corrected by using the following equations [45,46]:

\[
C_{adj} = \frac{G_m + (\omega C_m)^2}{\omega^2 + (\omega C_m)^2} C_m
\]

(9)

\[
a = \frac{G_m}{[G_m^2 + (\omega C_m)^2]R_s}
\]

(10)

where \(C_{adj}\) is the corrected capacitance, \(R_s\) is the series resistance, \(\omega = 2\pi f\) is the angular frequency and \(C_m\) and \(G_m\) are the measured capacitance and conductance respectively [47]. It is noted that the corrected capacitance remains constant in forward region. In addition,
there is a peak appears at −1.5 V in the reverse bias shifts irregularly to higher voltage [48].

Fig. 11(a and b) demonstrates the variation of capacitance-voltage (C − V) and corrected capacitance-voltage (C_{adj}−V) of Al/HCP-4/p-Si/Al diode with applied different frequencies [49]. It is noteworthy that (C − V) and (C_{adj}−V) varies independent of applied frequency may be due to the change of the geometric and dielectric properties of the photodiodes [50,51].

The conductance-voltage (G − V) and corrected conductance-voltage (G_{adj}−V) for Al/HCP-2/p-Si/Al diode have been measured as a function of frequency and are given in Fig. 12 (a and b). According to Fig. 12 (a), the conductance changes with applied frequency. It is observed that the conductance become constant in forward bias and starts to increase at −0.35 V in the reverse bias [52]. On other hand, the conductance of the photodiode is affected by series resistance can be expressed using the following equation [53]:

\[G_{adj} = \frac{[G_m^2 + (\omega C_{m})^2]a}{a^2 + (\omega C_{m})^2} \]

where \(G_{adj} \) is the corrected conductance. Fig. 12 (b) shows the variation of corrected conductance-voltage (G_{adj}−V) independence of applied various frequencies which confirms the effect of series resistance and change of charge carriers distribution in the depletion region with applied various frequencies [54].

Fig. 13 (a and b) demonstrate the change of conductance-voltage (G − V) and corrected conductance-voltage (G_{adj}−V) of Al/HCP-2/p-Si/Al and Al/HCP-4/p-Si/Al diodes respectively. It can be seen that the series resistance of the two devices decrease with applied frequency [57]. Fig. 14(a), shows a peak appears at −0.35 V in reverse bias and shifts to higher voltage. The broadening of the peak increase with frequency suggests the influence of interface states to applied frequency and the increase of charge carriers [58]. On other side, Fig. 14 (b), indicates two peaks appears at −1.15 V and −0.15 V in reverse bias and shift to positive voltage with increasing frequency [59].

The capacitance of a Schottky barrier diode can be determined from the equation [60]:

\[\frac{1}{C^2} = \frac{2(V_b+V)}{q \varepsilon_s \varepsilon_A N_d} \]

where \(N_d \) is the doping concentration, \(V_b \) the built-in voltage, \(V \) the applied voltage and \(\varepsilon_s \) is the static dielectric constant and \(\varepsilon_s=8.85 \times 10^{-14} \) F/cm. Fig. 15 (a and b) shows the \((1/C^2−V) \) plot measured at 1 MHz frequency for Al/HCP-2/p-Si/Al and Al/HCP-4/p-Si/Al diode respectively. The built-in voltage has been calculated from an extrapolation of the linear \((1/C^2−V) \) to the \(V = 0 \) axis and \(N_d \) is estimated from the slope of \((1/C^2−V) \) curve [61]. The barrier height \(\phi_b \) of the synthesized diodes can be investigated from the following relation [62]:

\[\phi_b = V_{bi} + \frac{kT}{q} \left[1 + \ln \frac{N_d}{N_i} \right] \]
where N_v is the density of states in the valence band of silicon [63]. The values of barrier height of Al/HCP-2/p-Si/Al and Al/HCP-4/p-Si/Al diodes have been estimated from $C-V$ measurements and are listed in Table 1. The results indicate that there are high differences in the values of barrier height obtained from $I-V$ and $C-V$ calculations [64]. This can be explained by the change of energy level at interface states or the change of trapped charges due to the existence of deep levels and localized states at the interfaces of organic-semiconductor contact [65].

4. Conclusions

Mono and di substituted dioxynaphthylcoumarin bearing cyclotriphosphazene compounds (HCP-2 and HCP-4) were prepared from the reaction of HCP-1 and HCP-3 with compound $1b$, respectively. The photodiode characteristics of Al/HCP-2/p-Si/Al and Al/HCP-4/p-Si/Al devices were investigated from $I-V$ and $C-V$ measurements. Electrical properties of the synthesized diodes and Schottky parameters such as ideality factor n, series resistance R_s, and barrier height ϕ_b have been determined in dark and at room temperature from $I-V$ characteristic curve and Norde’s equation. The Al/HCP-2/p-Si/Al diode indicates a high rectification ratio and high shunt resistance. The photocurrent response of the diodes indicate that the photodiodes exhibited a high photocurrent response. It is evaluated that the fabricated diodes can be used a photosensor for solar tracking systems.

Acknowledgements

The authors are grateful to the Research Fund of the TUBITAK for their support (for the synthesis of compounds) with the project No-110T652 and the photochemical applications supported by the Firat University Research Fund (Project no: FF.16.19). Also, authors would like to acknowledge the support of the King Khalid University for this research through a grant RCAMS/KKU/002-16 under the (Research Center for Advanced Materials Science) at King Khalid University, Kingdom of Saudi Arabia.

References
