Hesperia

Jennifer Sacher, Editor

Editorial Advisory Board
Carla M. Antonaccio, Duke University
Angelos Chaniotis, Institute for Advanced Study
Jack L. Davis, University of Cincinnati
A. A. Donohue, Bryn Mawr College
Jan Driessen, Université Catholique de Louvain
Marian H. Feldman, University of California, Berkeley
Gloria Ferrari Pinney, Harvard University
Thomas W. Gallant, University of California, San Diego
Sharon E. J. Gerstel, University of California, Los Angeles
Guy M. Hedreen, Williams College
Carol C. Mattusch, George Mason University
Alexander Mazarakis Ainian, University of Thessaly at Volos
Lisa C. Nevett, University of Michigan
John H. Oakley, The College of William and Mary
Josiah Ober, Stanford University
John K. Papadopoulos, University of California, Los Angeles
Jeremy B. Rutter, Dartmouth College
Monika Trümper, Freie Universität Berlin

Hesperia is published quarterly by the American School of Classical Studies at Athens. Founded in 1932 to publish the work of the American School, the journal now welcomes submissions from all scholars working in the fields of Greek archaeology, art, epigraphy, history, materials science, ethnography, and literature, from earliest prehistoric times onward. Hesperia is a refereed journal, indexed in Abstracts in Anthropology, L’Année philologique, Art Index, Arts and Humanities Citation Index, Avery Index to Architectural Periodicals, Current Contents, IBZ: Internationale Bibliographie der geistes- und sozialwissenschaftlichen Zeitschriften-litteratur, Numismatic Literature, Periodicals Contents Index, Russian Academy of Sciences Bibliographies, and TOCS-IN. The journal is also a member of CrossRef.

Hesperia Supplements

The Hesperia Supplement series (ISSN 1064-1173) presents book-length studies in the fields of Greek archaeology, art, language, and history. Founded in 1937, the series was originally designed to accommodate extended essays too long for inclusion in Hesperia. Since that date the Supplements have established a strong identity of their own, featuring single-author monographs, excavation reports, and edited collections on topics of interest to researchers in classics, archaeology, art history, and Hellenic studies.

Back issues of Hesperia and Hesperia Supplements are electronically archived in JSTOR (www.jstor.org), where all but the most recent titles may be found. For order information and a complete list of titles, see the ASCSA website (www.ascsa.edu.gr). The American School of Classical Studies at Athens, established in 1881, is a research and teaching institution dedicated to the advanced study of the archaeology, art, history, philosophy, language, and literature of Greece and the Greek world.
THE NORTH BASTION ON THE TEPECİK ACROPOLIS AT PATARA

DATING “EARLY HELLENISTIC” FORTIFICATION WALLS IN SOUTHWESTERN ANATOLIA

ABSTRACT

The Turkish excavations of the North Bastion complex on the Tepecik acropolis at Patara furnish important new evidence for the dating of fortifications throughout southwestern Anatolia. Our analysis indicates that the Tepecik Bastion was constructed in the mid-4th century B.C. by the Hekatomnids and that it succumbed to an assault by the forces of Alexander the Great in 334 B.C. Our analysis suggests that freestanding bastions preexisted Geländemauer throughout this region. Most importantly, the Bastion’s Phase IVa destruction level, which contained a sling bullet inscribed “Alexander, son of Philip,” furnishes a new and important datum point for the fine wares and terracottas found at that level.

Recent investigations reveal that Patara played a crucial role as a communications node during the formation of the Hellenistic empires. As one of the most important cities in ancient Lycia, it furnished an essential harbor to several inland communities in the basin of the Xanthos River (the modern Eşen River), including Xanthos, Tlos, and Pinara (Fig. 1). Since the commencement of the Patara excavations by Fahri İşik in 1989 (directed by Havva İşkan since 2009), Turkish archaeologists have identified the Tepecik acropolis as the earliest place of settlement, with evidence pointing to human occupation as early as the 3rd millennium B.C.

Tepecik hill forms a natural rock outcrop to the north of the city center, overlooking the city’s inner harbor on its eastern side (Fig. 2). Prior to excavation, visible surface remains of the urban fortifications at Patara indicated that the fortifications at Tepecik safeguarded both the harbor and the city center from approach from the north. All ancient land traffic to Patara would have passed this way, much as it does today. To clarify the development of these fortifications, excavations were undertaken at Tepecik.

1. We are grateful to Havva İşkan, the director of Patara Excavations, for permission to study the material discussed in this article. We must also thank Şevket Aktaş, Süleyman Bulut, and Andreas Konecny for their valuable advice and ideas regarding fortification walls, as well as Susan J. Rotroff and Andrea Berlin for valuable advice concerning our ceramics. The opinions expressed in this paper remain our own.

2. The ceramics found in previous excavation seasons on the Tepecik acropolis are dated to Early Bronze Age II; see İşik 2000, p. 6, fig. 5; Bulut, Coşkun, and Özüdoğru 2001, pp. 81–82, fig. 10. See also Dündar 2015, p. 200, figs. 1, 2.
in 2013 to reveal the existence of a bastion and a fortification wall (referred to hereafter as the “North Fortification Wall”). In this article we will attempt to ascertain the historical circumstances surrounding the construction and the destruction of the Tepecik Bastion. During the excavations, Turkish archaeologists identified a fire-burned destruction level in the Bastion. The in-situ finds of fine wares, amphoras, and military hardware at this level enable us to posit a date in the second half of the 4th century B.C. for its destruction. The dating of this destruction level furnishes a new and important datum point for the understanding of fine wares circulating in this era. Although our findings are preliminary and subject to revision, we believe that the Tepecik Bastion was constructed in the mid-4th century B.C. under the influence of the Hekatomnid dynasty and that it succumbed to a military assault by the forces of Alexander the Great in 334 B.C.

SITE DESCRIPTION

Excavations have been conducted intermittently at the Tepecik acropolis of Patara since 1999. The low hill of Tepecik (30 masl) is located on the northern side of a low plain that is protected on three sides by accessible heights: Tepecik to the northwest, Doğucasari to the southeast, and Kurşunlupe to the southwest (Fig. 2). These heights have long attracted scholarly attention due to the remains of a Hellenistic circuit wall that connects the three neighboring hills to protect the city on every side except that of the harbor. The tallest hill, Doğucasari (180 masl), guards the town below from assaults and potential artillery fire coming from the east. The circuit wall at this location exhibits a complex of five towers, as well as wall

remains indicating the presence of a small, enclosed citadel, which no longer survives. The defenses at Kurşunlutepe (situated above the theater to the southwest, with an elevation of 64 masl) are poorly understood, but the circuit wall there clearly extended to the crest of the hill. From this location the entrance to the outer harbor at Patara could easily be monitored and controlled. As noted above, the low rise of Tepecik hill looms directly over the remains of the “inner harbor” of Patara, a man-made feature that bears the characteristics of a military harbor.

As the example at Patara illustrates, a Geländemauer fortification system extended the city’s defenses away from the urban center and far into the neighboring countryside where it exploited neighboring heights for defensive purposes. Along their extensive perimeters, Geländemauer fortification

5. For a preliminary study of the harbor, see İskan and Koçak 2014.
systems typically exhibit numerous projecting towers and fortified gates. Various explanations may account for this significant innovation. For example, during emergencies, such as sieges, communities with Geländemauer defenses possibly assembled their rural inhabitants and animal herds within the area defined by walls for safety’s sake. Conversely, the rural landscape near the walls may have furnished mustering areas for the community’s defenders who needed to respond rapidly to various threats along the perimeter. Most likely, however, the function of these rural circuit defenses was to prevent artillery assaults on the urban landscape itself by fortifying and holding the very heights from which these bombardments were most likely to have occurred. In other words, the Geländemauer system placed the city proper beyond the range of ancient artillery from hostile forces. The date of the Geländemauer defenses at Patara bears as much on the timing of this innovation in military architecture as it does on the historical record of the city’s role during the Macedonian Wars of Succession.

During the early phases of these wars, Patara functioned as an important regional harbor for the naval forces of Antigonos I Monopthalmos and his son Demetrios Poliorcetes. Around 313 B.C., a combined land-and-sea expedition conducted by the Antigonid generals Theodotos and Perilaus embarked from Patara on an ill-fated mission to Cilicia (Diod. Sic. 19.64.5–8). Although Diodoros fails to mention the size of the expeditionary force, his express mention of Patara indicates that it mustered there. Patara was again mentioned by Diodoros (20.93) as one of several harbors employed by Demetrios as a staging ground for his siege of Rhodes in 304 B.C. A raiding party led by the Rhodian commander Menedemos assaulted the harbor at Patara, taking Demetrios’s forces unaware. Menedemos set fire to one of Demetrios’s warships and successfully made off with a number of supply-laden cargo ships.

On the basis of the masonry technique, the authors of the study of the Patara circuit wall date it to the Late Classical–Early Hellenistic era, which corresponds well with the literary testimonia detailing this turbulent period. For reasons to be explained below (pp. 562–572), this long circuit wall appears to have been erected to enhance—if not actually to replace—several previous phases of defensive installations on the Tepecik acropolis and elsewhere in the vicinity. Preliminary investigations pointing to the existence of earlier phases of defenses at Tepecik prompted the decision of the project directors to investigate the acropolis in greater detail.

The excavations of the remains at Tepecik revealed four phases of construction (Phases I, II, III, and IV), with Phase IV divided into two subphases, IVa and IVb. Phase I appears to date to the end of the 6th century B.C. The remains included rubble-built walls of dwellings cut into the bedrock, together with fragments of 6th-century Attic red-figure fine ware and a lamp. Phase II revealed similar remains of dwellings, rubble walls surviving both inside and outside the overlying walls of the Phase IVa bastion, together with fragments of an eye-cup kylix and an Attic black-glazed fragment. This phase appears to date to the first half of the 5th century B.C. Phase III consists likewise of dwellings constructed of rubble-built walls and packed-earth floors. Datable finds from the remodeled Phase III dwelling include two silver coins attributed to a Lycian dynast.

6. Patara I.1, p. 37.
one dated ca. 440–390 B.C., and the other ca. 390–380 B.C. It is important to emphasize that the coins were recovered from the fill of Phase III and lack precise finds spots. Together with in-situ finds of a lamp, black-slipped ceramics, and one Attic red-figure sherd, they indicate a date for Phase III around the end of the 5th century to the beginning of the 4th century B.C.

Phase IVa consists of the walls of the Bastion itself, which date to the second quarter of the 4th century B.C. The building presents a rectangular plan constructed of pseudo-isodomic hammer-faced limestone blocks. The complex was clearly fire damaged, and the excavators were able to retrieve a significant quantity of intact materials at the level of the Bastion’s packed-earth floor. These include some 53 ceramic items, 23 fragments of terracotta figurines, two coins, 12 metal objects, six bone objects, and one stone object, all of which date to the second half of the 4th century B.C. These artifacts will be treated in detail below. The most significant find is a sling bullet inscribed with the name “Alexander (son) of Philip,” presumably Alexander the Great, who is recorded to have seized Patara along with neighboring Lycian cities in 334 B.C. (Arr. Anab. 1.24.4). In Phase IVb, around the first half of the 3rd century B.C., the remains of the fire-damaged Bastion appear to have been remodeled into a dwelling. Steps carved into the blocks of the Bastion’s south wall connect rubble-built rooms with lime-mortared floors both inside and outside the ruined complex. Although the floor was not visible in the northern area of the complex, it was consistently visible along the south side, extending along an east–west axis. To the north of this the team encountered a deep circular pit full of rubble waste. In-situ finds of Phase IVb include fragments of black-slipped skyphoi, a black-slipped kantharos, West Slope Ware, and mushroom-rimmed Rhodian amphoras, all datable to the late 4th century B.C. In addition, the recovery of band-rimmed Rhodian amphora sherds and a stamped Rhodian handle furnish a terminus ante quem of the early 3rd century B.C.

THE MASONRY TECHNIQUE EMPLOYED IN THE NORTH FORTIFICATION WALL

Prior to the commencement of the Patara excavation program at the Tepecik acropolis, preliminary soundings were conducted in 1999 and again in 2009. The first effort exposed the remains of the North Fortification Wall,7 and the second revealed scattered remains along the back of the acropolis.8 Systematic exploration was resumed at Tepecik in 2013, and it has been ongoing ever since. To orient the excavation, the team plotted a survey grid of 784 quadrants, or sectors, across the Tepecik acropolis. Each sector measures 10 × 10 m in area and is arranged according to an alphanumeric grid of numbered quadrants (1–28) from south to north and lettered quadrants (A–Z) from west to east (Fig. 3). For the purposes of this article, the eight sectors that concern us are (from west to east) quadrants İ, J, K, and L, and (from south to north) quadrants 19 and 20 (in particular, sectors J–19, K–19, and L–19). These sectors contain the remains of the North Fortification Wall and an attached rectangular structure we refer to here as the Bastion.9

8. İşın and Dündar 2011.
9. Records of specific work activities within the trench excavations were inventoried according to stratigraphic work units (e.g., SU 25).
Figure 3. The Tepecik acropolis.
Patara Excavations Archives
During investigations conducted in 1999 and 2009, the North Fortification Wall and the Bastion directly to its east were dated preliminarily to the Late Classical period (Figs. 4–6). Together the two structures appear to have formed a gate to the Tepecik acropolis compound. Vestiges of a likely tower were noted by the investigators at the western corner of the North Fortification Wall. With a possible tower to one side, a bastion to the other, and an open-slit embrasure situated eight meters to the west of the gateway, this entrance would appear to have been heavily protected. It was also narrow (0.90 m), far too narrow, in fact, for the convenience of wagon traffic (Fig. 7). Unfortunately, apart from the surviving walls of the two neighboring structures, no visible trace of the manner in which the

10. İşık 2000, p. 78, fig. 63; Patara I.1, p. 37.
gateway was constructed has survived. In our treatment of the masonry technique, we will restrict our discussion here to the stonework of the North Fortification Wall.11

A long segment, approximately 15.75 m in length, survives of the North Fortification Wall. At its eastern corner, the wall turns 84 degrees south and continues for another 2.28 m. The masonry technique of both structures, the North Fortification Wall and the Bastion, employs pseudo-isodomic courses of hammer-faced limestone blocks,12 and although no clamp settings are detectable, levering sockets visible on most of the blocks indicate the use of crowbars to move the blocks into place (Fig. 8). The technique also employed inner and outer faces of large block construction that enclosed an aggregate of small stones and earthen fill.13 Blocks vary significantly in size on the exterior face of the wall, and a pattern of four distinct block sizes recurs along the length of the six visible courses. Some “stretcher” blocks are dressed as very long rectangular blocks (e.g., 1.16 × 0.55 m); others are rectangular but shorter (0.79 × 0.47 m); still others are nearly square (0.67 × 0.60 m); and some visibly narrow header blocks (0.24 × 0.44 × 0.80 m) are relatively small and stand noticeably upright in each course (see Figs. 4, 5). Apart from this, there is no particular pattern to the arrangement of the blocks. All blocks are flatly dressed horizontally to sit well in courses; the vertical faces of the blocks, however, are dressed with varying accuracy and border on trapezoidal. This is the first of several irregularities discernible in the style of the masonry. Most significantly, the inner faces of most blocks were left essentially unworked and rounded, apparently revealing their original quarry faces. The long sides of the header blocks were left largely unworked as well. In addition, the two header blocks exposed to view on the top of the wall

Figure 7 (left). View of the gate to the Bastion. Photo E. Dündar

Figure 8 (right). Levering sockets visible on the upper face of blocks in the south wall of the Bastion. Photo E. Dündar

11. Although heavily remodeled in later periods, the masonry visible in the surviving west wall of the Bastion (p.H. 3.90 m) indicates that its construction technique was identical.

12. For this technique, see the discussion in Vitr. De arch. 2.8.5; cf. Tomlinson 1961, p. 135; Winter 1971, pp. 69–91.

13. For the masonry technique, see Orlandos 1968, p. 117, fig. 133; Bingöl 2004, p. 91, fig. 133.
demonstrate that the headers do not bond with the blocks on the opposite face of the wall; instead, they merely extend to the point where their ends make contact with the blocks. By making contact with the blocks at the interior face of the wall, they formed compartments that are still laden with small stone fragments and gravel. This is the masonry technique known as emplekton (ἐμπλεκτόν), or “woven” style, but the execution is relatively crude.

The inner face of the wall employs large irregular blocks, quarry-faced and for the most part polygonal and arranged in irregular courses (Fig. 9). Their faces were left extremely rough, and several of the blocks are quite large. All in all, the dressed work was limited to the exposed surfaces of the blocks on the outside face of the wall. The surfaces of these blocks were clearly dressed to present the appearance of hammer-faced ashlar masonry; the horizontal surfaces were likewise carefully dressed to accommodate the settings of stone courses above and below. Despite their appearance, the dressed portions of the blocks extend no more than a few centimeters inward. In the resulting gaps between blocks, small rocks were deliberately wedged into place to reinforce the joins. From above, the interior profile of the blocks on both faces of the wall appears decidedly rough and unworked.

At the preserved east corner of the wall, where the stretchers are laid in overlapping courses, the drafted margins of the overlying blocks were aligned to form a distinctly sharp profile (Fig. 10). The regularity of the wall courses along the north face is interrupted at the center of the surviving wall segment by a tall, open-slit embrasure measuring 1.44 × 23 m on the exterior (Fig. 11). Below the embrasure, blocks were clearly assembled with difficulty to accommodate this feature. It is precisely here that one notices a number of irregularities in the design of the wall.

14. A few of the larger blocks also extend like headers into the wall.
The stonemasons appear to have positioned a discernibly oversized block two courses below the embrasure in order to support the weight of the blocks that frame the opening. In addition, to the left and to the right, the courses at this level of the wall are misaligned by nine centimeters. In fact, below the embrasure there are four courses of blocks extending along the east side of the wall, but only three are on the west side. The block directly below the embrasure was keyed to accommodate the alignment of these off-kilter courses. Directly below that block, another block had to be keyed to fit in place above the large supporting block at the base, while an additional small block was set atop the large block and beside the keyed block, once again to maintain the course alignment. Something seems to have gone wrong at this point in the construction, and since the irregularities are centered directly below the embrasure, one suspects that the root of the problem lay there.

One possible explanation for all this carefully manipulated stonework arises from the opening at the top of the embrasure in conjunction with the fact that the topmost course of the wall is relatively flat and aligned. It is most likely that the stone wall served as the foundation for a wooden or mudbrick superstructure, perhaps crenellated, that would have provided additional height and protection for the personnel posted on the wall. Something like this is all but necessitated by the exposed height of the embrasure in order to protect it and its personnel from missile fire and from the elements. Since the courses visible in the rest of the wall are fairly regular, it is possible that the masons were challenged by the requirement of constructing the embrasure and essentially jerry-built the supporting blocks and courses to accommodate this feature. The alignment of the

Figure 11. Two views of the open-slit embrasure in the North Fortification Wall. Photos E. Dündar
lower courses of the wall remains off-kilter, nonetheless, leaving one to suspect that something went amiss when the builders began assembling the wall, possibly working simultaneously from both ends toward the middle, where they anticipated having to construct the embrasure. The height of the embrasure itself would indicate that its intended purpose was to allow room for an artillery piece rather than mere arrow fire. This would make particularly good sense given the proximity of the gateway to the east.

A similar masonry technique is visible around the corner at the east end of the North Fortification Wall (Fig. 5, above). As noted earlier, the wall turns at an 84-degree angle and runs in a southerly direction for 2.28 m. Like the northern face of the wall, the side wall presents a facade of hammer-faced pseudo-isodomic masonry. And much like the north face of the wall, the largely regular masonry pattern on this side of the wall is interrupted in its second and third courses by the positioning of a large trapezoidal block at the south end of the wall. To join with the obliquely horizontal face of this block, the neighboring block was likewise dressed trapezoidally, and a small block was fitted directly above it to complete the join. In the course directly above the large block, a stretcher block of reduced height secures the alignment of the third course in the wall. Beside this stretcher rest three large blocks—one rectangular, one an upright header, and at the corner a nearly square block. Much like the irregularity on the north side of the wall, the alignment of the footing of this course in the wall was offset by a large trapezoidal block positioned at the end.

The masonry technique accordingly appears to be uniform throughout the extant remains of the North Fortification Wall. The exterior face of the wall was hammered into an appearance of roughly even courses of ashlar masonry, but wherever necessary, oddly sized and oddly fitted blocks were employed to compensate for irregularities in alignment and perhaps to meet load-bearing requirements. When necessary, keyed blocks or small individually tailored blocks were employed for the same purpose. When combined with the unworked character of the unexposed sides of the blocks, the impression created by the masonry technique points to the construction of the fortification wall on-site, rather than a work plan relying on the transportation of dressed blocks of consistent shape and size from a distant quarry. Although the blocks appear to exhibit recognizable patterns of form and size, each block would have been selected and dressed on-site in order to fit in place. Problems posed by architectural requirements such as an embrasure or load-bearing corner blocks were addressed one by one as they arose. On-site construction in this manner necessarily required a large labor force, such as, for example, a military contingent intent on erecting its own defensive installations. The likelihood that numerous hands worked on the project may also in some measure account for irregularities such as the off-kilter course alignment on the north exterior face of the wall.

The masonry technique visible in the North Fortification Wall on the Tepecik acropolis is characteristic of the wider defenses of the site. As we discuss below, this masonry technique is equally visible in fortifications surviving elsewhere in Lycia and south Karia. The style has gone largely unobserved by scholars who have discussed the likely dating of the Geländemauer systems in this region. Archaeological contexts such as those

15. The precise purpose of the embrasure is open to question, though its close proximity to the gateway to the east is worth noting. Reuse of a corridor built during a previous phase of construction (see n. 132, below) rendered the space inside the embrasure extremely narrow, ca. 0.59 m wide. That the feature housed a small artillery piece such as an oxybeles (ὀξυβελής, bolt-shooter) is possible and is supported by visible cuttings or setting holes on the side walls.

16. In fact, investigation of the bedding at the south corner of the wall revealed that the bedrock was dressed in a step-like manner precisely to lend the greatest possible support to the structure at the corner.

17. See pp. 562–572, below.
ARCHITECTURAL REMAINS FOR THE TEPECİK BASTION AND DWELLINGS

During an effort to expose more of the North Fortification Wall in 2009, the team encountered a rectangular structure, measuring 12.64 × 9.53 m, arranged in the same east–west alignment as the North Fortification Wall (Figs. 3, 12). This building, known as the Tepecik Bastion, underwent significant remodeling at a later date (ca. the middle of 3rd century B.C.), as indicated by the thick reinforced wall on the south side of the building, where remodeled steps are visible. Surviving wall segments, particularly a 3.90 m tall segment exposed on the west side of the building, indicate that its original masonry technique was the same as that of the North Fortification Wall to its west. In 2013 the project directors decided to excavate the entire extent of the bastion complex. A series of trenches, 5.00 × 9.00 m, were opened in undisturbed terrain inside the building through sectors K-19 and L-19, and the remaining fill behind the north wall of the complex was removed. As noted earlier, the trench work inside the bastion exposed the remains of five successive building phases (Phases I, II, III, IVa, and IVb; Figs. 13–15). The dates of these building phases range from the early 5th to the mid-3rd century B.C. We will proceed with our description chronologically, from the earliest phase (Phase I) to the latest (Phase IVb).

18. First to be removed were some irregular walls running through the middle of the Bastion. These were obviously modern and probably intended for use in the cultivation of olive trees.
The north bastion on the acropolis at Patara

End of the 6th century B.C. (Phase I)
First half of the 5th century B.C. (Phase II)
Turn of the 5th to the 4th century B.C. (Phase III)
Second quarter of the 4th century B.C. (Phase IVa)
First half of the 3rd century B.C. (Phase IVb)
Field's borders, probably early 20th century A.D.

Figure 13. Actual-state plan of the Bastion complex. Drawing E. Dündar

Figure 14. Architectural phases of the Bastion complex. Drawing E. Dündar
Figure 15. Cross-section of the Bastion. Drawing E. Dündar
Phase I Dwellings (Early 5th Century B.C.)

Work conducted in 2013 at the interior northwest corner of the Bastion (sectors K-19, K-20) revealed three earlier phases of construction (Phases I–III). The wall segments of these phases all employ dry rubble masonry. The remains of Phase I, probably dwellings, consist of an east–west foundation wall, 47 cm wide, constructed of rubble masonry and located in the northeastern part of trench K-19 (Figs. 13, 14, 16). The wall was connected to a room that was built into the bedrock on its eastern side. Conceivably the rubble masonry functioned as a socle for walls consisting of mudbrick or wood. However, the excavators were unable to locate any floors or doorways associated with the dwellings in Phase I (Figs. 13, 14).

The ceramic materials recovered at the base of the wall include Attic black-figure pottery sherds, wavy line–painted fine-ware sherds dated to the 6th century B.C., and a lamp dated to 525 B.C. (Fig. 17). Additional structural remains, oriented north–south and built into the bedrock in trench L-19, were destroyed by the foundation pit opened along the south wall of the Bastion (Fig. 18). These remains too may be dated to the end of the 6th century b.c. on the basis of recovered ceramic materials (Fig. 19). The remains of a third Phase I wall were identified directly outside the south wall of the Bastion in trench L-19 (Fig. 20). This wall was damaged by
the remodeling that occurred during the construction of the Bastion in Phase IVa, and it also was associated with 6th-century B.C. ceramic contexts. All three walls of Phase I can thus be dated to the end of the 6th century B.C., based on associated finds.
Phase II Dwelling (First Half of the 5th Century B.C.)

Phase II remains center around another north–south wall, 0.57 m wide, that passes through the Bastion west of center (Figs. 13, 14, 16). These remains also include a small feature identified as an oven near the south wall of the Bastion (Fig. 21) and a second wall running east–west directly outside the Bastion on its south side.21 These remains clearly postdate the Phase I remains, as they were built directly over them. Based on ceramic materials recovered at the foundation of the wall inside the Bastion (SU 14), as well as at the base of the oven, this phase may be dated to the first half of the 5th century B.C. The ceramic materials include fragments of an eye-cup kylix (possibly Attic), an Attic black-glazed fragment, and various polychromatic painted wares that are possibly local (Fig. 22).22

21. The remains of the oven were exposed at the southwest corner of the Bastion in trench K-19.

Phase III Dwelling (Turn of the 5th to the 4th Century B.C.)

The Phase III remains are complicated by the fact that the dwelling underwent repeated remodeling over a relatively brief span of time. The visible remains include a rectangular room with walls 0.75 m wide, located in the southwest area of the Bastion in trench K-19, and a later wall, 0.63 m wide, that was probably a building addition (Figs. 13, 14, 23). The later remodeling indicates that the dwelling was extended westward, although its length was ultimately bisected by the construction of the Bastion’s west wall in Phase IVa. Two rooms with visible remains of a packed-earth floor appear to have been added to this structure during its remodeling. Based on the size of the rooms and the length of the walls, Phase III appears to have consisted of a dwelling similar to those of Phases I–II. The walls of this dwelling were solidly founded on bedrock. Removal of the gravel fill beneath the floor in the western portion of the dwelling revealed a large quantity of ceramic material. These include a lamp, black-slipped ceramics, and household pottery dated to the end of the 6th century B.C., as well as one Attic red-figure sherd (Fig. 24). The presence of this red-figure sherd requires that the dwelling be dated no earlier than the 5th century B.C. In

23. Cf. Agora XXX, p. 302, no. 1275, pl. 120, attributed to the Painter of the Frontal Warrior and dated to the late 5th century B.C.
addition, the fact that the Phase III walls were constructed directly over wall remains of Phase II establishes a terminus post quem of the second half of the 5th century B.C. (Fig. 25). Again, no evidence of a door for the likely dwelling of Phase III was identified.

Two additional finds associated with Phase III are worth noting. In SU 6 in the uppermost layer of Phase III, the team recovered a silver coin dated to the turn of the 4th century B.C. (Fig. 26). The obverse displays the head of Athena facing right, wearing a crested Attic helmet, while the reverse shows a winged lion, seated and facing right, framed by an incuse square. Above the lion the inscribed letters [. .]Ρ [. .] can be made out. Coins of this weight and size bearing the image of Athena are usually attributed to the Lycian dynast Kherei or Kheriga (ca. 440–390 B.C.). A similar coin attributed to the Lycian dynast Tribenimi (390–380 B.C.) was discovered in 1999 in an area directly outside the northwest corner of the Tepecik Bastion. Despite the fact that both coins were recovered in fill, as opposed to being found in situ, their discovery in the immediate area of the Bastion helps to confirm the date of the Phase III dwelling to the turn of the 5th to the 4th century B.C.

24. Diam. 2.0 cm; Wt. 8.13 g. A very similar coin, fire damaged, was found at the level of the burned floor associated with Phase IVa of the Bastion. For the coin types attributed to Kherei or Kheriga, see Mørkholm and Zahle 1976, pp. 75–76.

Phase IVa Bastion (Second Quarter of the 4th Century b.C.)

Phase IVa is that of the Tepecik Bastion itself. The building has a rectangular plan, 12.65 × 9.50 m, with exterior walls 1.20 m thick, constructed of pseudo-isodomic hammer-faced masonry of limestone blocks, as mentioned earlier (see Figs. 6, 13, 14). Its surviving west wall stands to a height of 3.90 m and the wall on the south side stands to 2.49 m. The Bastion appears to have been divided into two rooms by a central wall running north–south, with a thickness of 0.55 m. The entire area underwent extensive remodeling in the 3rd century b.C., making it difficult to determine at present what relationship, if any, the Bastion bore to the vestiges of the Geländemauer that rises up the slope of the Tepecik acropolis from the east.26 To examine the foundation of the structure, the team removed blocks along the northern wall of the Bastion until the dressed bedding was exposed in the bedrock below (Fig. 27).27 During this operation a destruction level of burned materials was observed in the 23.07–23.00 layer of the K-19 and L-19 trenches (see Fig. 15). Based on in-situ finds (to be discussed below), the destruction of the Bastion appears to have occurred during the second half of the 4th century b.C. For a terminus post quem we rely on a black-glazed rim fragment, probably belonging to a skyphos, found in the foundation pit of the Phase IVa south wall (SU 94; Fig. 28). Examples with this decorative style found in Attica are dated to the late 5th century b.C.28

The dating of the destruction of the Phase IVa Bastion relies primarily on the remains recovered at the level of the burned packed-earth floor

26. For the likelihood that the Bastion was unattached, see p. 562, below.
27. The bedding for the north wall of the Bastion was 1.55 m wide.
28. The style of the floral motif differs from that of West Slope Ware: the branches and lines are painted in white/cream, but the leaves are left unslipped. Reserved leaves were a red-figure technique. This appears to be a local copy of a type of skyphos produced in Attica in the 5th century b.C., from a context dating before ca. 425 b.C.; see Rotroff and Oakley 1992, pp. 97–98, no. 142, fig. 8, pl. 43.
the north bastion on the acropolis at patara

mentioned above (Figs. 29, 30), as well as some additional fire-damaged remains recovered in the west room (Fig. 31). Excavated in trench L-19, these finds consist of 53 ceramic items, 23 fragments of terracotta figurines, 12 metal objects, six bone objects, two coins, and one stone object. The stone object and one of the metal objects appear to be sling bullets.
Squarely dated to the second half of the 4th century B.C., these particular finds allow us to pinpoint the destruction of the Phase IVa Bastion with greater precision. Given the importance of these finds to the dating, function, and likely cause of the Bastion’s destruction, we will consider them carefully below.

Phase IVb Dwelling (First Half of the 3rd Century B.C.)

Phase IVb represents a likely remodeling of the Phase IVa Bastion into a dwelling. The south wall of the Bastion was reused and a doorstep was added in this phase (Fig. 32). An east-west dividing wall (10.15 m × 0.75 m) was built across the middle of the complex and the north wall was removed altogether, reducing the complex in size to ca. 12.64 × 2.64 m (Figs. 12–14, 23). Excavations carried out in the eastern half of the bastion exposed a floor of lime-surfaced mortar at the Phase IVb level of the remains (Fig. 33). As noted above, evidence of this floor continues on the exterior south side of the Bastion, with the remodeled doorstep cut into the surviving south wall to allow for movement between adjoining rooms (Figs. 15, 34).

From the fill below the Phase IVb lime-surfaced floor, the team recovered fragments of black-slipped skyphoi dated to the middle of the 4th century B.C., mushroom-rimmed Rhodian amphora sherds dated to the last quarter of the 4th century B.C., a base belonging to a black-slipped kantharos dated to the last quarter of the 4th century B.C., fragments of unguentaria and West Slope Ware dated to the end of the 4th century B.C., and band-rimmed Rhodian amphora sherds dated to the first half of the 3rd century B.C. (SU 20; Fig. 35). From the foundation pit of the east-west dividing wall of Phase IVb (SU 35), the excavators recovered a red-figure sherd dated to the 5th century B.C. and a Rhodian amphora handle stamped with the name Hieroteles (Period I–II; Fig. 36). Since Hieroteles was a potter active ca. 273/272–225 B.C. in the Rhodian Peraia, we can safely assign Phase IVb of the Bastion complex to the first half of the 3rd century B.C.

This detailed summary of the assemblages recovered from the various contexts of the Bastion demonstrate the existence of at least five phases in

Figure 32. View of the Phase IVb steps cut into the south wall of the Bastion. Photo E. Dündar

Figure 33. View of the Phase IVb lime-surfaced floor (SU 67). Photo E. Dündar

Figure 34. View of the Phase Ib lime-surfaced floor and steps. Photo E. Dündar
the development of the complex, three of which (Phases I–III) date from the end of the 6th to the turn of the 5th to the 4th century B.C. As noted earlier, Phase IVa, the construction of the Bastion itself, probably occurred no sooner than the last quarter of the 5th century B.C., with its fire destruction and abandonment occurring precisely in 334 B.C. The complex was left abandoned for approximately 60 years before it was remodeled into dwellings sometime after the second quarter of the 3rd century B.C.

THE MATERIAL ASSEMBLAGE OF PHASE IVa

The following catalogue presents the material found in the Phase IVa levels. Catalogue entries include the year of excavation and object number (e.g., PTR’13-107 = object 107, excavated at Patara in 2013), the findspot (mapped in Fig. 3), and the precise stratigraphic location of the find, followed by dimensions, observations on material, and an estimated date.

Pottery

Molded-Rim Cup-Kantharos

A nearly complete example of an imported Attic black-slipped cup-kantharos (1) was found in the destruction level of Phase IVa (Figs. 31, 37). The rim is mold-made with a pronounced, down-flaring flange. The upper body is mildly concave with an offset join at the lower part of the cup. The bulging wall of the lower cup is incised with vertical ribbing. The foot is a
molded pedestal with a reserved incised ring for decorative purposes. The long double-rolled handles flare outward and upward, splaying downward to graze the rim of the cup at the point of its flange. A reserved floral motif runs along the neck. On one side, directly below the floral motif, is the inscription ΔΙΟΣ ΣΩΤΗΡΟΣ. Rotroff dates similar kantharoi found in the Athenian Agora to the years 325–300 B.C., 31 and a more similar example found at Pergamon is dated to the third quarter of the 4th century B.C. 32 Yet another example found in a grave on Chalchi was accompanied by olpai dated between 410–380 B.C. (cf. 40–44). 33

Rolled-Rim Plates

Eighteen intact rolled-rim plates were found in the destruction level (2–19; Figs. 38, 39). These plates have a ring foot, a relatively simple profile, and a “rolled” rim that is inwardly and upwardly thickened. The plates lack any painted or rouletted decoration. The potter slipped the plates by holding each plate by its foot and dipping it upside down in the solution. 34 He also stacked the plates in the kiln. The results in many instances were running streaks of black slip as well as occasional misfired, red-colored splotches on the exterior surface of the plates and bright fabric-red circles of exposed

31. *Agora* XXIX, p. 250, no. 82, fig. 8, pl. 8. Rotroff dated this cup-kantharos to ca. 325 B.C. because of the absence of any stamped decoration (pers. comm.). See also *Agora* XII, p. 283, no. 661, fig. 7.

33. Jacopi 1932, p. 144, fig. 22.

34. For many of the plates the ring foot is bare, indicating that it was not dipped into the solution.
clay surface on the interior tondo of the plates. The rim diameter of the plates varies from 12 to 22 cm. Two of the plates exhibit a small circular depression on the inside floor that resembles those of fish plates (18, 19). Rolled-rim plates like these are found in “Hellenistic” contexts throughout the eastern Mediterranean. Similar plates made of Attic fabric have been found in Attica and Corinth, for example, which Rotroff dates to the 2nd century B.C.,36 and other examples reportedly of Rhodian fabric were found in the Kyrenia shipwreck and dated by Berlin to ca. 320/310–290/280 B.C. The plates in the Phase IVa Bastion at Patara appear to be of local fabric, produced either locally or regionally in the wider Xanthian river basin. Both Rotroff and Berlin have indicated that a sizeable town such as Patara will likely have produced its own unique versions of this plate, perhaps in imitation of nearby Rhodian examples. Based on associated finds in the burned context of Phase IVa, these plates are more properly assigned to the second half of the 4th century B.C. It is worth nothing that the dates for the Kyrenia plates match relatively closely that of the destruction level in the Bastion.38

2 Rolled-rim plate
PTR’13-211. L-19 (SU 025-21/burned layer).
Diam. rim 12.2, base 7.2; Th. 0.5 cm.
Fabric hard fired; fine texture with thin lime and mica inclusions. Clay 5YR 6/4 light reddish brown. Slip 2.5YR 2.5/1 black.
Second half of the 4th century B.C.

3 Rolled-rim plate
PTR’13-212. L-19 (SU 025-22/burned layer).
Diam. rim 13.8, base 7.6; Th. 0.5 cm.
Fabric hard fired; fine texture with thin lime and mica inclusions. Clay 5YR 6/4 light reddish brown. Slip 2.5YR 2.5/1 black.
Second half of the 4th century B.C.

4 Rolled-rim plate
Diam. rim 13.5, base 6.8; Th. 0.4 cm.
Fabric hard fired; fine texture with thin lime and mica inclusions. Clay 5YR 6/4 light reddish brown. Slip 2.5YR 2.5/1 black.
Second half of the 4th century B.C.

5 Rolled-rim plate
Diam. rim 13.4, base 7.4; Th. 0.5 cm.
Fabric hard fired; fine texture with thin lime and mica inclusions. Clay 5YR 6/4 light reddish brown. Slip 2.5YR 2.5/1 black.
Second half of the 4th century B.C.

6 Rolled-rim plate
Diam. rim 16.2, base 8.7; Th. 0.6 cm.
Fabric hard fired; fine texture with thin lime and mica inclusions. Clay 5YR 6/4 light reddish brown. Slip 2.5YR 2.5/1 black.
Second half of the 4th century B.C.

35. Corinth VII.3, pp. 36–37, nos. 101–106, pls. 4, 45; Hellström 1971, p. 58, no. 58, pl. 33; Jones 1950, p. 210, nos. 1, 2, figs. 119, 178; Dündar and Işın 2015, p. 208, fig. 16.
36. Agora XXIX, pp. 142–143, 312, no. 678, fig. 48.
37. Rotroff (pers. comm.) suggests that local ceramic production in Patara need not follow the same pattern of evolution as production in, e.g., Athens. She questions whether comparisons with Athenian pottery are necessarily valid. Berlin (pers. comm.), meanwhile, observes that, “most places with reasonably sized populations had their own pottery producers, who used local clays and probably did not export such modest household goods.” We are grateful for the advice furnished by both scholars regarding these plates.
38. The same appears to be true of the echinus bowls (20–33), the salt cellars (34–39), and the olpai (40–44); see entries, below.
Figure 38. Rolled-rim plates (2–10). Scale 1:3, except where indicated. Drawings D. Varmaz and Ş. Yener; photos E. Dündar

7 Rolled-rim plate
PTR’13-216. L-19 (SU 025-26/burned layer).
Diam. rim 17, base 10.5; Th. 0.7 cm.
Fabric hard fired; fine texture with thin sand and mica inclusions. Clay 2.5YR 6/4 light reddish brown. Slip 2.5YR 4/4 reddish brown.
Second half of the 4th century B.C.

8 Rolled-rim plate
Diam. rim 22.1, base 11.7; Th. 0.6 cm.
Fabric hard fired; fine texture with thin lime and mica inclusions. Clay 2.5YR 6/6 light red. Slip (interior) Gley 1 2.5/N black; (exterior) 5YR 7/4 pink to Gley 1 2.5/N black.
Second half of the 4th century B.C.

9 Rolled-rim plate
PTR’13-221. L-19 (SU 025-31/fire-damaged floor).
Diam. rim 13.7, base 7.3; Th. 0.6 cm.
Fabric hard fired; fine texture with thin lime and mica inclusions. Clay 5YR 6/4 light reddish brown. Slip (interior) 5YR 2.5/1 black; (exterior) 5YR 2.5/1 black.
Second half of the 4th century B.C.

10 Rolled-rim plate
Diam. rim 13.5, base 7.4; Th. 0.4 cm.
Fabric hard fired; fine texture with thin sand and mica inclusions. Clay 5YR 6/4 light reddish brown. Slip (interior) Gley 1 2.5/N black; (exterior) Gley 1 2.5/N black to 5YR 5/3 reddish brown.

Second half of the 4th century B.C.

11 Rolled-rim plate
Diam. rim 15.9, base 8.6; Th. 0.6 cm.
Fabric hard fired; fine texture with thin sand and mica inclusions. Clay 5YR 6/6 reddish yellow. Slip (interior) Gley 1 2.5/N black; (exterior) Gley 1 2.5/N black.
Second half of the 4th century B.C.

12 Rolled-rim plate
Diam. rim 13.9, base 7.6; Th. 0.6 cm.
Fabric hard fired; fine texture with thin sand and mica inclusions. Clay 5YR 6/6 reddish yellow. Slip (interior) Gley 1 2.5/N black; (exterior) Gley 1 2.5/N black to 5YR 6/4 light reddish brown.
Second half of the 4th century B.C.

13 Rolled-rim plate
Diam. rim 12.8, base 6.8; Th. 0.5 cm.

Figure 39. Rolled-rim plates (11–19).
Scale 1:3. Drawings D. Varmaz and Ş. Yener; photos E. Dündar
Fabric hard fired; fine texture with thin sand and mica inclusions. Clay 5YR 6/4 light reddish brown. Slip (interior) Gley 1 2.5/N black to 2.5YR 3/2 dusky red; (exterior) Gley 1 2.5/N black to 2.5YR 4/6 red.
Second half of the 4th century B.C.

14 Rolled-rim plate
PTR'13-234. L-19 (SU 025-44/fire-damaged floor).
Diam. rim 12.8, base 6.6; Th. 0.5 cm.
Fabric hard fired; fine texture with thin sand inclusions. Clay 5YR 6/4 light reddish brown. Slip (interior) Gley 1 2.5/N black to 2.5YR 4/6 red; (exterior) Gley 1 2.5/N black to 2.5YR 6/4 light reddish brown.
Second half of the 4th century B.C.

15 Rolled-rim plate
Diam. rim 13.5, base 7; Th. 0.5 cm.
Fabric hard fired; fine texture with thin sand and mica inclusions. Clay 5YR 6/4 light reddish brown. Slip (interior) Gley 1 2.5/N black; (exterior) Gley 1 2.5/N black to 5YR 6/4 light reddish brown.
Second half of the 4th century B.C.

16 Rolled-rim plate
Diam. rim 16.4, base 7.6; Th. 0.5 cm.
Fabric hard fired; fine texture with thin sand, lime, and mica inclusions. Clay 5YR 7/4 pink. Slip (interior) 2.5YR 3/3 dark reddish brown to 5YR 2.5/1 black; (exterior) 5YR 2.5/1 black.
Second half of the 4th century B.C.

17 Rolled-rim plate
Diam. rim 15.4, base 7.7; Th. 0.5 cm.
Fabric hard fired; fine texture with thin sand, lime, and mica inclusions. Clay 5YR 6/4 light reddish brown. Slip (interior) 7.5YR 2.5/1 black; (exterior) 7.5YR 2.5/1 black to 10R 5/6 red.
Second half of the 4th century B.C.

18 Rolled-rim plate
PTR'13-228. L-19 (SU 025-38/fire-damaged floor).
Diam. rim 14, base 7.2; Th. 0.5 cm.
Fabric hard fired; fine texture with thin lime and mica inclusions. Clay 7.5YR 6/4 light brown. Slip (interior) 7.5YR 2.5/1 black; (exterior) 7.5YR 2.5/1 black to 2.5YR 4/4 reddish brown.
Second half of the 4th century B.C.

19 Rolled-rim plate
Diam. rim 15, base 7; Th. 0.8 cm.
Fabric hard fired; fine texture with thin sand inclusions. Clay 7.5YR 7/4 pink. Slip 7.5YR 4/1 dark gray to 7.5YR 5/3 brown.
Second half of the 4th century B.C.
Echinus (Incurved-Rim) Bowls

Fourteen echinus bowls were recovered on the fire-blackened floor of the Phase IVa destruction level (20–33; Figs. 30, 40, 41). In the Athenian Agora, echinus or incurved-rim bowls are present in contexts that date as early as the early 5th century B.C.39 These forms were very popular in the 4th century B.C. and continued to exhibit both Classical and Hellenistic characteristics: that is, some are shallow while others are deep.40 The forms recovered at the Phase IVa Bastion are all of the shallow type.41 They were slipped in the same casual manner as the plates described above. Traces of running slip are visible on the exterior surface of many of the bowls, along with misfired, red-colored splotches, and there are bright red tondos on the interior floor of many bowls.

Echinus bowls gained in popularity during the Late Classical–Early Hellenistic period. Examples of bowls that are very similar to those found in the Bastion, especially 22–24, were recovered at the Karaçallı necropolis near Perge and are dated by Çokay-Kepçe to 425–400 B.C.42 Other examples found at Pergamon are dated to the first half of the 4th century B.C.,43 those found at Labraunda to the middle of the 4th century,44 those at Halikarnassos to the end of the 4th century,45 and those at Ephesos generally to the 4th century B.C.46 Rotroff, however, has dated the echinus bowls of the shallow type found in the Athenian Agora to the years 325–300 B.C.47 Likewise, Berlin has dated the echinus bowls recovered from the Kyrenia shipwreck—bowls that are nearly identical to those found in the Bastion—to ca. 320/310–290/280 B.C.48

20 Echinus bowl Fig. 40
 Diam. rim 7.3, base 4.7; Th. 0.5 cm.
 Fabric hard fired; fine texture with thin sand inclusions. Clay 7.5YR 7/4 pink.
 Slip (interior) 7.5YR 2.5/1 black; (exterior) 7.5YR 2.5/1 black to 10R 5/6 red.
 Second half of the 4th century B.C.

21 Echinus bowl Fig. 40
 Diam. rim 10.2, base 5.8; Th. 0.5 cm.
 Fabric hard fired; fine texture with thin sand and mica inclusions. Clay 10YR 6/4 pale red.
 Slip (interior) Gley 1 2.5/N black; (exterior) Gley 1 2.5/N black.
 Second half of the 4th century B.C.

22 Echinus bowl Fig. 40
 Diam. rim 11, base 6.2; Th. 0.6 cm.
 Fabric hard fired; fine texture with thin sand and mica inclusions. Clay 5YR 6/6 reddish yellow.
 Slip (interior) Gley 1 2.5/N black; (exterior) Gley 1 2.5/N black to 5YR 6/6 reddish yellow.
 Second half of the 4th century B.C.

23 Echinus bowl Fig. 40
 Diam. rim 10.4, base 6.2; Th. 0.6 cm.

39. Agora XII, p. 137.
41. One unique example, bowl 33 from the Bastion destruction level, displays two horizontal handles.
43. Schäfer 1968, pp. 37, 43, pl. 4c13.
44. Hellström 1971, p. 58, no. 42, pls. 5, 33.
48. A. Berlin, pers. comm.
Second half of the 4th century B.C.

24 Echinus bowl
Diam. rim 13.6, base 8; Th. 0.5 cm.
Fabric hard fired; fine texture with thin lime inclusions. Clay 5YR 6/4 light reddish brown. Slip (interior) 2.5YR 4/5 red; (exterior) 5YR 2.5/1 black to 2.5YR 4/4 reddish brown.
Second half of the 4th century B.C.

25 Echinus bowl
Diam. rim 11.8, base 5.8; Th. 0.4 cm.
Fabric hard fired; fine texture with thin sand and mica inclusions. Clay 5YR 6/4 light reddish brown. Slip (interior) 7.5YR 2.5/1 black; (exterior) 7.5YR 2.5/1 black.
Second half of the 4th century B.C.

26 Echinus bowl
Diam. rim 13.6, base 7.8; Th. 0.4 cm.
Fabric hard fired; fine texture with lime and thin mica inclusions. Clay 5YR 6/4 light reddish brown. Slip (interior) 7.5YR 2.5/1 black; (exterior) 2.5YR 5/8 red to 7.5YR 2.5/1 black.
Second half of the 4th century B.C.
27 Echinus bowl
Diam. rim 11.4, base 6.8; Th. 0.5 cm.
Fabric hard fired; fine texture with lime and mica inclusions. Clay 5YR 7/4 pink. Slip (interior) 2.5YR 4/8 red; (exterior) 2.5YR 4/8 red to 2.5YR 2.5/1 black.
Second half of the 4th century B.C.

28 Echinus bowl
Diam. rim 11, base 6.6; Th. 0.4 cm.
Fabric hard fired; fine texture with thin sand, lime, and mica inclusions. Clay 2.5YR 6/6 light red. Slip (interior) 2.5YR 4/6 red; (exterior) 10R 4/8 red to 7.5YR 2.5/1 black.
Second half of the 4th century B.C.

29 Echinus bowl
Diam. rim 7, base 4.3; Th. 0.3 cm.
Fabric hard fired; fine texture with thin sand and mica inclusions. Clay 5YR 6/4 light reddish brown. Slip (interior) Gley 1 2.5/N black; (exterior) Gley 1 2.5/N black.
Second half of the 4th century B.C.
30 Echinus bowl
PTR’13-244. L-19 (SU 025-54/fire-damaged floor).
Diam. rim 6.4, base 4.3; Th. 0.4 cm.
Fabric hard fired; fine texture with thin sand and lime inclusions. Clay 5YR 6/4 light reddish brown. Slip (interior) 2.5YR 4/4 reddish brown; (exterior) 2.5YR 4/4 reddish brown to 7.5YR 2.5/1 black.
Second half of the 4th century B.C.

31 Echinus bowl
Diam. rim 11.6, base 6.8; Th. 0.4 cm.
Fabric hard fired; fine texture with thin sand inclusions. Clay 7.5YR 6/4 light brown. Slip (interior) Gley 1 3/1 very dark greenish gray; (exterior) 7.5YR 4/2 brown to Gley 1 3/1 very dark greenish gray.
Second half of the 4th century B.C.

32 Echinus bowl
PTR’13-250. L-19 (SU 025-60/fire-damaged floor).
Diam. rim 8.4, base 4.6; Th. 0.3 cm.
Fabric hard fired; fine texture with thin sand and mica inclusions. Clay 2.5YR 6/4 light reddish brown. Slip (interior) 7.5YR 2.5/1 black; (exterior) 7.5YR 2.5/1 black.
Second half of the 4th century B.C.

33 Echinus bowl
Diam. rim 6.8, base 3.4; Th. 0.3 cm.
Fabric hard fired; fine texture with thin sand and lime inclusions. Clay 2.5YR 6/4 light reddish brown. Slip (interior) 10R 4/6 weak red; (exterior) 10R 5/8 red to 2.5YR 4/4 reddish brown.
Second half of the 4th century B.C.

Saltcellars

Similar in form but significantly smaller echinus bowls were classified by Sparks and Talcott as footed saltcellars. Examples of this type recovered from the destruction level of the Phase IVa Bastion include 34–39 (Fig. 42). The dimensions of these bowls are quite small, with rim diameters varying between 4 and 8 cm. In her study of Hellenistic pottery at Patara, İşin classified these as “deep echinus bowls” and assigned them to ca. 300 B.C. For the examples found in the Athenian Agora (which bear a remarkable similarity to those at Patara), Sparks and Talcott assigned a date of the second half of the 4th century B.C. But due to their extremely limited presence in 4th-century contexts in the Agora, Rotroff has suggested that a date closer to the beginning of the 3rd century B.C. would be more accurate. Other examples found in the excavations at Klaizomenai have been assigned to the mid–4th century B.C., a date based in part on the recovery of one such bowl in a well-recorded context. As noted earlier, the Kyrenia shipwreck, dated to ca. 320/310–290/280 B.C., has yielded footed saltcellars that are nearly identical to those found in the Bastion. Other footed saltcellar bowls have been dated to the last quarter of the 4th century B.C. at Corinth, and to the end of the 4th century B.C. at Gordion.

49. *Agora* XII, p. 137.
53. Zeren 2004, pp. 142, 251, nos. 209, 210, fig. 75.
54. Namely, well 3, layer IIb; see Hasdağlı 2012, p. 129, no. 12.
55. A. Berlin, pers. comm.
56. *Corinth* VII.3, p. 32.
57. Winter 1984, pp. 93, 97.
Saltcellar Fig. 42
Diam. rim 6.6, base 4; Th. 0.5 cm.
Fabric hard fired; fine texture with thin sand and mica inclusions. Clay 2.5YR 6/4 light reddish brown. Slip (interior) 7.5YR 2.5/1 black; (exterior) 7.5YR 2.5/1 black.
Second half of the 4th century B.C.

Saltcellar Fig. 42
Diam. rim 6, base 4; Th. 0.4 cm.
Fabric hard fired; fine texture with thin sand inclusions. Clay 5YR 7/4 pink. Slip (interior) 2.5YR 4/6 red; (exterior) 2.5YR 4/8 red to 7.5YR 3/1 very dark gray.
Second half of the 4th century B.C.

Saltcellar Fig. 42
Diam. rim 4.4, base 3.3; Th. 0.5 cm.
Fabric hard fired; fine texture with thin sand and mica inclusions. Clay 5YR 6/4 light reddish brown. Slip (interior) 2.5YR 4/6 red; (exterior) 2.5YR 4/6 red.
Second half of the 4th century B.C.
37 Saltcellar

Diam. rim 5.3, base 3.8; Th. 0.3 cm.
Fabric hard fired; fine texture with thin sand and mica inclusions. Clay 5YR 6/6 reddish yellow. Slip (interior) 7.5YR 2.5/1 black; (exterior) 7.5YR 2.5/1 black.
Second half of the 4th century B.C.

38 Saltcellar

Diam. rim 6, base 4; Th. 0.5 cm.
Second half of the 4th century B.C.

39 Saltcellar

Diam. rim 6.2, base 4; Th. 0.4 cm.
Fabric hard fired; fine texture with mica inclusions. Clay 2.5YR 6/6 light red. Slip (interior) 10YR 2/1 black; (exterior) 10YR 2/1 black.
Second half of the 4th century B.C.

Olpai

Five olpai were found in the Phase IVa destruction level of the Bastion (40–44; Fig. 43). All five have the same form and slip characteristics. There is a thickened rim that is noticeably flattened on the top and the side, a concave neck widening to a sloping shoulder, and an elongated body tapering toward a tall ring foot. One thick rolled handle extends either from the rim or directly below the rim to the top of the shoulder. The olpai are slipped in the same upside-down manner as the plates and bowls mentioned above, and they display similar production flaws.

The dating of this form closely resembles that of the other forms mentioned above, although the available comparanda are not entirely similar. In the Athenian Agora, Sparkes and Talcott dated a somewhat similar form to ca. 350–325 B.C.; their example, however, has a handle that arches high above the rim before descending to the shoulder, and it also lacks a ring foot. Other examples from the Agora are somewhat closer in style and are dated by Rotroff to 325–300 B.C. Additional examples were unearthed from graves on Chalchi, and these were dated ca. 410–380 B.C. Nevertheless, the closest comparanda come from two places: olpai recovered at Halikarnassos, which are dated to the 4th century B.C., and, once again, olpai found in the Kyrenia shipwreck, dated ca. 320/310–290/280 B.C. At this point it is worth repeating that the rolled-rim plates, the echinus bowls, the footed saltcellars, and the olpai from the Kyrenia shipwreck are remarkably similar in both form and fabric to the forms unearthed in the Phase IVa destruction level of the Bastion. These and other forms have been recovered in large numbers throughout the excavations conducted on the Tepecik acropolis, leading us to suspect that they are the result of either local or regional production.

58. One foot is tall and conical, one is beveled at the base, one is incised at the point of contact, and the others are relatively rounded.
60. E.g., *Agora* XXIX, p. 296, no. 502, fig. 37, pl. 49.
63. A. Berlin, pers. comm.
64. Berlin (pers. comm.) insists that the fabric of the Kyrenia fine wares is different.
Figure 43. Olpai (40–44). Scale 2:5. Drawings D. Varmaz and Ş. Yener; photos E. Dündar.
40 Olpe

PTR’13-223. L-19 (SU 025-33/fire-damaged floor).
Diam. rim 4.2, base 3.6; H. 15.7; Th. 0.5 cm.
Second half of the 4th century B.C.

41 Olpe

PTR’13-224. L-19 (SU 025-34/fire-damaged floor).
Diam. rim 3.4, base 3; H. 12.6; Th. 0.4 cm.
Fabric hard fired; fine texture with thin sand, lime, and mica inclusions. Clay 5YR 6/4 light reddish brown. Slip (interior) 5YR 2.5/1 black; (exterior) 2.5YR 5/6 red.
Second half of the 4th century B.C.

42 Olpe

Diam. rim 4.2, base 3.6; H. 16.7; Th. 0.6 cm.
Fabric hard fired; fine texture with thin sand, lime, and mica inclusions. Clay 5YR 6/4 light reddish brown. Slip (interior) 5YR 2.1/1 black; (exterior) 5YR 2.1/1 black.
Second half of the 4th century B.C.

43 Olpe

Diam. rim 3.1, base 2.6; H. 12; Th. 0.4 cm.
Second half of the 4th century B.C.

44 Olpe

Diam. rim 3.9, base 3; H. 16.7; Th. 0.4 cm.
Fabric hard fired; fine texture with thin sand, lime, and mica inclusions. Clay 7.5YR 7/3 pink. Slip (interior) 7.5YR 7/3 pink; (exterior) 7.5YR 7/3 pink; 2.5YR 4/6 red.
Second half of the 4th century B.C.

Lekythos

One lone lekythos was found in the destruction level of the Bastion (45; Fig. 44). It has a thick rolled rim, a concave neck that widens to a broad shoulder, and a bulging yet relatively squat body that tapers to a tall ring foot; the foot is noticeably beveled at the base. Apart from the ring foot, the form resembles that of the better-known squat lekythos.65 The fabric and slip work display the same local characteristics as the forms mentioned above. The closest examples to this form have been found at Corinth. One such example, identified as a round-mouthed oinochoe, was found in the Northern Cemetery at Corinth and dated very broadly to the Classical period.66 Another, identified as a miniature jug, was unearthed

at the Sanctuary of Demeter and Kore and dated by Pemberton to the third quarter of the 4th century B.C. The example from the Bastion at Patara appears to fall somewhere between a squat lekythos and an unguentarium, based on the characteristics of the latter form, to be discussed immediately below.

Fig. 44. Lekythos (45). Scale 1:2.

Drawing Ş. Yener; photo E. Dündar

Along with the lekythos described above, a singular type of unguentarium was uncovered in the Phase IVa destruction level of the Bastion (Fig. 45). The rim is broad and somewhat triangular, and the neck is narrow, concave, and disproportionately shorter than the body. The neck widens at the base to a broad nearly flat shoulder. The rounded body bulges just below the shoulder before tapering inward to a tall, thick ring foot. The entire form was slipped with the same cream-colored solution as the clay fabric; it was also decorated with a pattern of painted bands of varying thickness. The pattern appears to alternate between dark brown and dark yellow bands (double brown bands from the neck to the shoulder and thick yellow bands along the tapering underbelly). Large lug handles of applied rolls of clay are attached just below the shoulder, perhaps for decorative purposes. Numerous examples of this unguentarium have been found at the Tepecik acropolis, indicating once again that this was a locally or regionally produced item. In his publication of the unguentaria at Patara, Dündar classified these as “early examples,” and dated them to the second half of

67. *Corinth* XVIII.1, p. 99, no. 139, pl. 17.

68. In all, there are 10 horizontal dark brown bands, each set framing yellow bands above and below, from the neck to the shoulder. These alternate with seven yellow bands, two below the shoulder and five on the shoulder and neck.
Fig. 45. Unguentarium (46).
Scale 1:2. Drawing D. Varmaz; photo E. Dündar

the 4th century B.C.

Examples that slightly resemble this form have been found in the Athenian Kerameikos, Corinth, Ktima, and Dor, and all are dated to the middle of the 4th century B.C.

Unguentarium
Diam. rim 2, base 4.7; H. 14.5; Th. 0.5 cm.
Fabric hard fired; fine texture with thin sand, lime, and mica inclusions. Clay 10YR 7/3 very pale brown. Slip 10YR 7/3 very pale brown; bands 10YR 7/3 very pale brown to 7.5YR 4/2 brown. 340–325 B.C.

Fish Plate

One fish plate was recovered from the Phase IVa destruction level of the Bastion (47; Fig. 46). The form is relatively flat, with a thick wall sloping gently downward to an inset cup at the center of the floor. The plate exhibits a large pendant rim. There are two bands of unslipped red clay, one at the edge of the rim and the other incised around the central cup. The ring foot below displays a grooved resting surface and a centered nipple on its underside. Since the black slip is lustrous, the plate is probably an Attic import. Similar examples found in Athens have been dated to 350–325 B.C. Additional fish plates recovered during previous seasons of the Tepecik acropolis excavations have been dated to the last quarter of the 4th century B.C.

69. Patara IV, p. 95, nos. U1–U4, pl. 1.
71. Agora XII, p. 311, no. 1072, fig. 10.
LAMPS

Three lamps were recovered in the Phase IVa destruction level of the Bastion (48–50; Fig. 47). These wheelmade forms are spherical, verging on oval. The top exhibits a relatively flat discus offset by a deep incision with a large filling hole. The large spout projects to one side along the same plane as the discus and filling hole. The spout is noticeably hand worked, with a relatively flat snout and broad flat sides. The body bulges at the center and then tapers sharply underneath to a tall, thick ring foot. Lamps 48 and 49 display a cream, or reddish yellow fabric and slip made of the same clay solution, much like the unguentarium (46) described above. The fabric appears to be local. Lamp 50, on the other hand, has a black slip. Based on his analysis of Corinthian finds, Broneer argues that lamps of this type (Type VII) began to appear in the 5th century B.C. and continued in production during the 4th century.73 Examples recovered in the Athenian Agora were classified as Type 25 A–B Prime and dated to the second half of the 4th century B.C.74 Other examples found at the Kerameikos, Kition, and Ephesos have been dated to the end of the 4th century.75

48 Lamp
Diam. base 2.8; H. 4.6; Th. 0.6 cm.
Second half of the 4th century B.C.

49 Lamp
Diam. base 3; H. 4.6; Th. 0.5 cm.
Fabric hard fired; fine texture with thin sand, lime, and mica inclusions. Clay 2.5YR 6/6 light red. Slip 2.5YR 6/6 light red.
Second half of the 4th century B.C.
Amphoras

Two commercial transport jars were recovered from the Phase IVa destruction level of the Bastion (51, 52; Fig. 48). The first of these, 51, which appears to have suffered breakage in situ, is a mushroom-rimmed Rhodian amphora. This jar can be distinguished from the better-known examples found at the Kyrenia shipwreck by the angularity of both its mushroom rim (which is shorter but more pronounced and cut sharply underneath) and its shoulder.76 A similar example was unearthed in a well at Klazomenai and dated to the middle of the 4th century b.c.77 The other amphora found in the Phase IVa destruction level, 52, was a Mendean–North Aegean type. Similar amphoras have been unearthed in the Athenian Agora and Corinth and dated to the end of the 5th century b.c.78 Others from the Alonnessos shipwreck are dated to 420–400 b.c., and still others from the Porticello shipwreck are dated to the beginning of the 4th century b.c.79 Examples found at Chersonessos on the Black Sea have been dated to 390–380 b.c.80

51 Amphora (Rhodes)

PTR’09-591. L-19 (fire-damaged floor).
Diam. rim 10.2; H. 82.4; Th. 1 cm.
Fabric hard fired; fine texture and a slim, porous clay structure with thin sand and mica inclusions. Clay 5YR 6/6 reddish yellow. Slip 7.5YR 7/4 pink.
Middle of the 4th century b.c.

76. For the Kyrenian examples, see Katzev 1969, esp. the fig. on p. 58.
77. Hasdağlı 2012, pp. 138, 163, no. 62, fig. 9.
80. Monachov 1999, p. 178, no. 8, fig. 64.
Amphora (Mende) Fig. 48
PTR’09-0592). L-19 (fire-damaged floor).
Diam. rim 12.4; p.H. 28.6; Th. 0.9 cm.
Fabric hard fired; fine texture with thin sand, lime, and mica inclusions. Clay
5YR 6/6 reddish yellow. Slip (interior) 7.5YR 7/3 pink.
Second quarter of the 4th century b.c.

Achaemenid Bowl

One lone Achaemenid bowl was recovered from the Phase IVa destruction level of the Bastion (53; Fig. 49). These vessels clearly imitate metal prototypes, but since they are wheelmade, their walls are smooth and well turned. The thickened rim flares outward and is flattened at the top. The diameter of the rim is larger than that of the body at its widest point. The upper half of the form is distinctly concave. It joins with the lower body at a distinct offset contact point approximately half way down the form. The bowl-like lower portion then tapers sharply inward to a hollow base characterized by a pronounced boss underneath. The Achaemenid bowl was slipped using the same upside-down dipping technique as the rolled-rim plates, echinus bowls, olpai, and lekythos described above, but its slip exhibits more of a reddish-brown hue.

Achaemenid bowls have been observed in the Mediterranean from the end of the 6th to the beginning of the 3rd century b.c.81 Recent studies have demonstrated that the distribution of these bowls was particularly concentrated in southwestern Anatolia. Prior to the discovery of this example at Patara, the only other known examples of Lycian origin were from Hacimusalar. These have been dated to the 4th century b.c. by Tetova.82

82. Toteva 2007, p. 120, no. 167, pl. 18.
Other examples have been recovered at the Karaçallı necropolis and at Perge in Pamphylia. Bronze and earthenware bowls closely resembling the bowl from the Phase IVa destruction level of the Bastion were found in a tomb at Karaçallı, and these were dated to 430–400 B.C. based on associated finds.83 The bowls recovered from a bothros at Perge lack a stratigraphical context. Based on stylistic and typological observations, and on the recovery of numerous lamps in the same fill, Çokay-Kepeç and Recke argue that the deposit can be dated to the end of the 3rd or the beginning of the 2nd century B.C.84 Elsewhere in western Anatolia, Achaemenid bowls have been found at Seyitömer, dated to 375–325 B.C.,85 and at Sardis, dated to the 4th century B.C.86 Achaemenid bowls unearthed at Hasanlu IIIA in Iran have been dated 400–275 B.C.87

Achaemenid bowl

Diam. rim 11, base 3; Th. 0.4 cm.

Goblet

A single goblet of white cream fabric and slip was recovered from the Phase IVa destruction level of the Bastion (54; Fig. 50). The wall slopes slightly inward from the flat rim to an offset join characterized by a pronounced flange. Below the flange the wall tapers sharply to a pedestal foot. Narrow at the top, the pedestal splays outward to a broad platter-like disk at the base. A slight incision is visible along the outer edge of the foot.

Goblet

83. Çokay-Kepeç 2006, pp. 74, 152–153, nos. MT1–MT3; Çokay-Kepeç and Recke 2007, pp. 84, 90, figs. 9–11.
84. Çokay-Kepeç and Recke 2007, p. 87.
86. Lehmann 1996, pl. VIII:98/2;
87. Dyson 1999, pp. 105, 107, fig. 7:e.
Scoop

The scoop recovered from the Phase IVa destruction level of the Bastion is of a very unusual shape (55; Fig. 51). The hollow vertical handle is formed from a bow of thickened clay. The flat, wide body was molded into a shovel-like blade, with the edge creased upward to resemble a rim. There is a decided trefoil appearance to the join of the handle and the shovel. The form is black slipped. A similar item was found in the Athenian Agora, although the handle in that example is fashioned more as a ring than a bow. Rotroff dated the Agora example to the second half of the 3rd century B.C. and proposed an eastern origin for the form, which resembles to some degree incense shovels from ancient Israel.88 The forms found in the Agora, however, are later and not entirely similar.89 These scoops probably imitate metal examples.

88. Agora XXIX, pp. 134, 302, no. 569, fig. 40, pl. 53.
89. S. Rotroff, pers. comm.
Terracottas

Twenty-three fragments of terracotta figurines were recovered inside the Bastion, only eight of which have survived in a suitable state to warrant description in this study (56–63; Fig. 52). The remaining fragments are small and undiagnostic. Of the eight to be discussed, only one (59) was recovered in situ at the destruction level of the Phase IVa burned floor (SU 25). The other examples were uncovered in a layer of mixed fill in the immediate vicinity. Closer examination of this fill indicates that all of the fragments of terracotta figurines originated from the same stratigraphic unit (SU 25) of the Phase IVa destruction level; several fragments were probably disturbed during the remodeling associated with dwellings built during Phase IVb. These disturbances include the excavation of the debris pit mentioned earlier and the foundation pit for the wall erected along the northern side of this area (as revealed by the trench excavated at L-19). Although none of the surviving fragments of terracotta figurines join, they all have the same fabric, as well as the same fire-blackened residue. This indicates that they were all exposed to the destruction suffered by the Phase IVa Bastion. For these reasons, the fragments of the terracotta figurines most probably arise from the same context and can be treated as components of the same assemblage as the other materials mentioned in this section. The fragments consist of five female heads (57–61); a lower body draped in a flowing pleated gown, with one leg advanced (56); a fragment of a draped upper body exhibiting a shoulder and bent arm (62); and the joined torsos of one male and one female (63). Since the leg fragment was found in situ on the burned floor of the Phase IVa destruction level of the Bastion, we begin with this.

Fragment 56 represents a rare terracotta find. It displays the lower body of a dressed female figure advancing toward her right. The outline of her right thigh, knee, lower leg, and foot is clearly revealed through her gown, which flows in billowing pleats to her left to indicate motion. The features of her right side are noticeably blackened from fire damage. The fragment is otherwise broken below the waist and just above the knee of the figure’s left leg. The figurine can be reconstructed as a female figure dressed in a chiton advancing rapidly to her right, with her weight on her left foot. Her posture clearly indicates that she is walking or running in the same manner as the Nereids in the sculpted relief of the Nereid Monument at nearby Xanthos. The likely influence of this celebrated monument on the figurine found at the Phase IVa destruction level of the Bastion seems self-evident. The Nereid Monument has been dated by Childs and Demargne to 390–380 B.C. 90 Another nearly identical fragment of a lower torso of a terracotta figurine was recovered from Taras (Tarentum) in Italy, and it is currently stored in the British Museum. Interpreted as a dancing Maenad, this fragment is dated to the end of the 5th century B.C. 91 In view of the dated materials from the Phase IVa destruction level of the Bastion, the terminus ante quem for the Pataran figurine has to be the third quarter of the 4th century B.C. 92

The next five items are female heads of figurines. Terracotta 57 represents the head of a young girl probably wearing a headscarf or kekryphalos (κεκρύφαλος). The entire head is noticeably blackened from fire damage.
The face exhibits a high forehead with the hair pulled back under a hairnet. A similar example found in Corinth is dated to the 4th century B.C. based on the use of the hairnet. An example from the Asklepieion in Pergamon was originally dated to the end of the third quarter of the 3rd century B.C., but following discussions with De Luca, Töpperwein reassigned it to the end of the 4th century B.C. In view of the dating of the Phase IVa destruction level, 57 should also be dated to the 4th century B.C.

Terracotta 58 is the head of a young girl tilted slightly to her left. A thick coil of hair frames the forehead, while a headscarf covers the upper head of the figure and folds into a kind of drooping snood at the back of the head. Details of the hair and headscarf are indicated by incision. An earring hangs from the figure's right ear; the left ear is broken and missing. A similar example found in the Athenian Kerameikos is dated to the third quarter of the 4th century B.C.

Terracotta 59 is the head of a young girl tilted slightly to her left, and it too is noticeably darkened by fire damage. The girl's hair is gathered into a snood-like head covering at the back of the head, which was pulled upward and tied in a knot, now damaged, at the top of her head. Incisions are used to add the appearance of folds in her head covering. Above the young woman's broad forehead deep grooves are used to create evenly spaced forelocks that are drawn upward under the head covering. A round earring is visible on her right ear; the left ear is broken. Slightly later examples sporting similar hairstyles from the Athenian Kerameikos are dated to the first quarter of the 3rd century B.C.

Terracotta 60 is the head of a woman broken below the neck and again blackened by fire damage. The head is raised and tilted slightly to her left. Like 58, she has what looks like a thick coil of hair framing her forehead; however, the rest of the hair appears to be gathered into a bun at the back of the head and covered by the folds of a himation. The head of terracotta 61 is somewhat similar, though more heavily damaged on her left side and in the vicinity of the mouth. Again, the fragment is significantly blackened by fire damage. The woman's head is turned slightly to her left, and a thick lock of hair drapes along the right side of her face, while a thin strand is pulled tightly to the side on her left. Otherwise, the woman's hair is shrouded in a heavy headdress that folds thickly down the right side of her head; similar folds are set back on the left side of the head. An example that shares several characteristics with 60 and 61 was recovered at Pergamon and dated to the 4th or the beginning of the 3rd century B.C.

Both 60 and 61 likely served as votive figurines.

Piece 62 is a fire-darkened fragment representing the upper right torso of a female figure, garbed in a thickly folded himation. The outline of the figure's shoulder and right arm, bent and raised toward the chest, is discernible beneath the folds of the garment. A similar arm position is found in Tanagra figurines from Boiotia that are dated to the 2nd century B.C., and another example found in the Athenian Kerameikos has been dated to 330–320 B.C.

Perhaps the most interesting of the fire-darkened fragments from this context is 63. It depicts two figures, a nude male and, to his left, a female dressed in a chiton or tunic. They face forward, arm in arm, as a couple.

94. Töpperwein 1976, p. 71, no. 317, pl. 47.
95. Kerameikos XV, p. 140, no. 417, pl. 73.
96. Kerameikos XV, pp. 142–143, no. 432, pl. 74.
97. Thompson 1963, p. 130, no. 202, pl. 43.
98. Töpperwein 1976, p. 18, no. 32, pl. 5.
Both heads are missing, as is the lower portion of the male figure. There appear to be thick locks of hair on both sides of the preserved neck on the male figure; on his left side, a fold of fabric at the waist suggests that his lower body was wrapped in a thick garment. It is also possible that his head was covered by the hood of a large cloak that extended behind his body and was pulled forward at the waist in order to clothe his lower body. This may account for the faint line that extends downward from his left shoulder to his waist. Otherwise, his upper torso appears nude. The female figure appears to be fully clothed, with her left arm turned behind her back. Faint zigzag incisions along her waist indicate that her tunic was cinched by a belt.

Given their fire-darkened surfaces, all of these terracotta pieces most probably originated, like 59, in the Phase IVa destruction level of the Bastion (SU 25), which, as we have indicated above, is most likely dated to the second half of the 4th century B.C. The terracotta figurines were, therefore, manufactured some time prior to this event.

56 Terracotta figurine, female, right leg advanced
 PTR’13-043.5. L-19 (SU 043-05).
 H. 8.6 cm.
 Second half of the 4th century B.C.

57 Terracotta figurine, young girl, head
 PTR’13-058. L-19 (SU 017-01).
 H. 3.2 cm.
 Fabric burned,
 Second half of the 4th century B.C.

58 Terracotta figurine, young girl, head
 PTR’13-031. L-19 (SU 017-02).
 H. 3.5 cm.
 Fabric burned.
 Second half of the 4th century B.C.

59 Terracotta figurine, young girl, head
 H. 4.6 cm.
 Fabric burned.
 Second half of the 4th century B.C.

60 Terracotta figurine, female, head
 PTR’13-032. L-19 (SU 021-01).
 H. 4.6 cm.
 Fabric burned.
 Second half of the 4th century B.C.

61 Terracotta figurine, young girl, head
 PTR’13-043.4. L-19 (SU 043-04).
 H. 2.3 cm.
 Fabric burned.
 Second half of the 4th century B.C.
Figure 52. Terracottas (56–63).
Scale 1:2, except where indicated. Photos E. Dündar
Metal Finds

Numerous metal objects were recovered on the blackened floor of the destruction level of the Phase IVa Bastion, including a lead sling bullet (64), a bronze bugle (65), metal bedpost feet, and numerous nails alongside additional unidentified metal objects.100 We limit our discussion to the sling bullet and the bugle and their relevance to the likely cause of the Bastion’s destruction.

Lead Sling Bullet

Perhaps the most notable find recovered from the fire-damaged floor of the Phase IVa Bastion is an almond-shaped lead sling bullet (64; Fig. 53).101 The sling bullet is inscribed with the names ΑΛΕΞΑΝΔΡΟΥ and ΦΙΛΙΠΠΟΥ in the genitive. Although these names occur separately on sling bullets found elsewhere (such as Olynthos), this is the first instance in which the two names have been found inscribed together.102 The most obvious inference in this instance is that the inscribed sling bullet belonged to the army of Alexander the Great of Macedonia (336–323 b.c.), based on the employment of both name and patronymic. More than any other item recovered from the Phase IVa destruction level of the Bastion, this inscribed lead sling bullet would seem to indicate that the bastion was overrun by the forces accompanying Alexander the Great when he advanced through Lycia in 334 b.c.

There is a slight possibility, however, that the names refer not to Alexander the Great, but rather to his immediate successors, Alexander IV (the infant son of Alexander and his wife Roxane) and Alexander’s older brother, Philip III Arrhidaios. These two personages were declared joint rulers by Alexander’s army following his demise in Babylon in 323 B.C.
The two kings reigned together as figureheads for the regime until the death of Philip Arrhidaios in 317 B.C., followed shortly thereafter by the death of Alexander IV in 310/309 B.C. It is conceivable that the sling bullet was employed by forces wishing to express their loyalty to these two kings during the tumultuous years that immediately followed the death of Alexander the Great, perhaps during what is known as the First War of Succession (322–320 B.C.). Alexander’s former officers became divided into factions, one of which, commonly referred to as the “royalists,” was commanded by the regent Perdikkas (ca. 355–320 B.C.) and supported by loyalists such as Eumenes of Kardia (ca. 362–316 B.C.). Forces supporting the royalists possibly overran the Bastion at Patara or, conversely, died defending it, thus accounting for the presence of the inscribed sling bullet in the Phase IVa destruction level. We believe that the preponderance of the evidence argues against this. This matter is complicated, however, and detracts from the evidence being presented here for the Phase IVa destruction level of the Bastion. For this reason, we have reserved further discussion regarding the “owner” of the missile for an appendix (pp. 573–577, below).

Salpinx (Military Bugle) and Other Military Finds

A similarly pertinent find unearthed in the same context is the remains of a military bugle, or salpinx (65; Fig. 54). Made of bronze, the intact funnel-shaped bell is ca. 35 cm long. A similar example in the Museum of Fine Arts, Boston, which survives intact, has a long attachable tube consisting of 13 interconnecting segments (including a mouth piece) made of ivory, strengthened at the joins by bronze rings. The total length of this assembled horn is 1.57 m, and it came with a bronze chain with rings at each end, apparently to serve as a shoulder strap. Devoid of extensions and/or mouth piece, the Patara horn consists only of the flaring bell section. The use of bugles as military instruments is confirmed by ancient texts, and they are clearly represented on vases, as well as in reliefs on monumental graves in Lycia.106

Cf. Xanthoulis 2006.
106. Poll. 4.86.4, 6; Aristid. Quint. De musica 6.62. For examples depicted on vases, see Haspels 1936, p. 228, pl. 34:1A–1C. The salpinx and salpinx player appear in reliefs on Lycian monumental tombs dated to 400–360 B.C.; for the Trysa Heroon, see Landskron 2015, p. 84, nos. 2, 3, pls. 67, 73; for the Heroon of Perikle at Limyra, see Borchhardt 1976, nos. 1, 2, pls. 25, 26. See also the list of salpinx players depicted on monumental graves in Lycia in Borchhardt 1976, p. 70.
In addition to these finds of military import, arrowheads of various design and a few large projectile points associated with artillery machines were recovered from fill in and around the Bastion, including several recovered along its exterior south wall (Fig. 55). The larger projectiles have damaged blades, indicating that they had been fired at the Bastion and had possibly been deflected off its stone-faced exterior. Although these lack precise archaeological contexts, their recovery in the immediate vicinity of the Bastion remains significant. Together with the presence of the fire-damaged floor in the Phase IVa destruction level of the Bastion, the presence of these uncatalogued weapons in and around the Tepecik Bastion reinforces the idea that the citadel was garrisoned by a military force at the time of its destruction.

Stone Objects

In the same corner of the burned floor of the Phase IVa destruction level where the lead sling bullet, the bugle, and the rest of the finds were discovered, the excavators also recovered a round stone sling bullet, 2 cm in diameter. The likelihood that this is, in fact, a sling bullet is supported by the discovery of numerous similar projectiles within the immediate vicinity of the Bastion. Although these other finds lack the context furnished by Phase IVa inside the Bastion, a trench opened by the excavation team

107. For the metal finds, see *Patara* V.2, nos. K39–K42, A12.
in 2015 in quadrant K-17 revealed a fire-burned destruction level with a cluster of 39 stone sling bullets (Fig. 56). The sling bullets were found piled together in a corner of a building located inside the North Fortification Wall gate, ca. 16 m southwest of the Bastion. While the results remain preliminary, the pottery at this location closely resembles that recovered from the Phase IVa destruction level inside the Bastion.

DESTRUCTION OF THE BASTION

The finds recovered in the general vicinity of the Bastion point to the likelihood that the destruction level identified in Phase IVa of the Bastion extends throughout the wider Tepecik acropolis. In further support of this assumption, fire-damaged floors have been exposed in at least three locations, the ceramic material recovered from each location is chronologically the same, and weapons such as sling balls, arrowheads, and large projectile points associated with an *oxybeles* have surfaced in the immediate vicinity of the Bastion (Figs. 55, 56). There is thus abundant evidence to demonstrate that a military confrontation occurred on the Tepecik acropolis in the second half of the 4th century B.C., and on the basis of the fire-damaged destruction level seen in multiple places, that the acropolis was overrun. If we are correct that the name inscribed on the lead sling bullet is that of Alexander the Great, then the destruction of the Phase IVa level of the Bastion can be dated precisely to 334 B.C.

Not only does the preponderance of the material found in the Phase IVa destruction level of the Bastion point to such a moment, but the historical record of Alexander’s advance through Lycia likewise supports

109. Two of the larger missile heads, probably *oxybeles* javelins, are damaged, indicating that they were fired at the Bastion and deflected by its stone walls.
this conclusion. The chief source, Arrian, specifically identifies Patara as one of four Lycian communities that were compelled by Alexander’s forces to surrender (Anab. 1.24.4). The description of Patara’s capitulation as described by Arrian has, however, not been fully appreciated. In distinct contrast to the example of the inhabitants of Telmessos, whom Alexander persuaded to surrender following a round of negotiations (ὁμολογία προσηγάγετο), Arrian states that the cities of Pina, Xanthos, and Patara were taken “by means of capitulation” (περάσας δὲ τὸν Ξάνθον ποταμὸν Πίναρα καὶ Ξάνθον τὴν πόλιν καὶ Πάταρα ἐνδόθέντα ἔλαβε καὶ ἄλλα ἐλάττω πολίσματα ἐς τριάκοντα).110 The placement of the participle ἐνδόθέντα directly after the name Patara is crucial to the meaning of the sentence because it could conceivably modify all three place names or that of Patara exclusively.111 This matters greatly, because when used by Thucydides and Xenophon, the adverb, ἐνδόθεν, conveys a similar notion of actions undertaken by local inhabitants, if not actual treachery from within.112 Arrian possibly employs ἐδοθέντα here to convey a similar concept. In other words, either Pinara and Xanthos were “taken” and Patara “capitulated from within,” or all three communities did the latter.

Either way, the passage can in no way be taken to mean that these three communities surrendered without a fight. On the contrary, the Greek suggests that the defenses of Patara were seized by Alexander’s forces as a result of some treacherous activity on the part of the inhabitants. Evidence of a destructive fire, arrowheads, and sling bullets in the Phase IVa destruction level of the Bastion and throughout the Tepecik acropolis point to the likelihood of a military assault, and Arrian (Anab. 1.24.4) hints at a possible scenario. Like other Persian-held bastions along this coast, it is conceivable that the Tepecik Bastion was garrisoned at this time by foreign mercenaries (φυλακὴν ἔχον ξένους μισθοφόρους). Arrian’s use of the participle ἐνδόθεντα appears to underscore the actions taken by the inhabitants of Patara to assist the Macedonian army with the seizure of the Tepecik Bastion.113 We will return to this matter later.

110. “[C]rossing the Xanthos River, [Alexander] took by means of capitulation Pina, the city of Xanthos, Patara, and 30 smaller places.”

111. Literally, Alexander took Patara “after it had surrendered” (construing ἐνδόθεντα as an accusative singular participle modifying Patara). Since it is fairly common for a neuter plural to be used to modify all of a series of terms, ἐνδόθεντα could also be neuter accusative plural, but if Arrian meant it to apply to all three cities, he would most likely have clarified this by adding an adjective like πάντα. We thank our colleague Keith Dickson for this observation.

112. Thuc. 2.79, 8.71; Xen. Hell. 3.1.18, 6.2.15, 7.2.8; Anab. 5.2.22.

113. Moreover, the fact that Arrian mentions Alexander’s activities with respect to these four Lycian cities (Telmessos, Pinara, Xanthos, and Patara), while omitting the names of numerous others, suggests that he viewed the events that befell these named settlements as noteworthy. Arrian also notes the siege and surrender of Hyparna in nearby Karia, and Diodoros (17.28.1) notes a major conflict with the Marmares (Mnara). In comparison with the minimal notice of Alexander’s conquest of Lycia, Arrian (Anab. 1.28–29) furnishes a fairly long discussion of his negotiations, threats of sieges, and assaults on various cities in Pamphylia and Pisidia, indicating that resistance there was far more significant.
THE TEPECIK BASTION AND HEKATOMNID DEFENSIVE ARCHITECTURE

At this point we wish to reflect briefly on our results as they bear on similar investigations of fortifications in southwestern coastal Anatolia, more specifically, on recent attempts to identify Hekatomnid fortifications in Karia and Lycia. We propose that the Tepecik Bastion was constructed by King Mausolos of Karia when he seized control of Lycia following the Satraps’ Rebellion (ca. 366–360 B.C.). That being the case, the Bastion represents an identifiable form of Hekatomnid defensive construction. In our opinion, Hekatomnid and Lycian fortifications of the early 4th century B.C. tended to consist of unattached outlying hilltop bastions, sometimes combined with narrowly conscribed circuit walls around the immediate settlement. In many instances, the bastions were later incorporated into the extended Geländemauer systems that we see today. If this hypothesis is correct, then the evidence for sequential phases in the development of fortifications along the Hekatomnid frontier ought to be discernible at several settlements besides Patara. This hypothesis is in keeping with the archaeological data presented above, in particular with evidence indicating the construction of the Phase IVa level of the Bastion in the early 4th century and its destruction possibly in 334 B.C.

We also propose that the scale of defensive construction at Patara during the Hekatomnid era was likely to have been far more restricted than the surviving remains of the Pataran Geländemauer would indicate. In recent years a number of scholars, including McNicoll, Konecny and Ruggendorfer, Pedersen, Pimouguet-Pédarros, and Schmaltz, have attempted to isolate what they believe to be the hallmark traits of Hekatomnid fortifications. Pimouguet-Pédarros and Pedersen even go so far as to identify a particular style of stone masonry as “Hekatomnid.” A consensus seems to be emerging that the circuit walls of nearly every major settlement in this region may be classified as Hekatomnid, based on common patterns in so-called strategic design. More specifically, the aforementioned scholars point to the adaptation to the Geländemauer system of extended fortifications buttressed by numerous projecting towers and fortified gates as Hekatomnid, particularly when a characteristic style of ashlar masonry is present. Some even go so far as to argue that the Geländemauer system

114. For the approximate date of Mausolos’s seizure of Lycia, following his intervention during the Satraps’ Rebellion (366–360 B.C.), see Diod. Sic. 16.74; Childs 1981, pp. 77–78; Bryce 1983, pp. 39–40; 1986, pp. 113–114; Weiskopf 1989, p. 68; Keen 1998, pp. 171–174; Briant 2002, pp. 672–673. Mausolos is credited with having commanded a naval assault on Cyprus during the rebellion and likely assembled his naval forces in harbors along the Karian-Lycian frontier. Following the rebellion Lycia remained under his control until his death in 353 B.C. His authority was succeeded by that of Pixodaros ca. 335/4 B.C., and for a very brief time by that of Orontobates; see Strabo 14.2.17 [C 657].

116. Pimouguet-Pédarros 2000, pp. 86–87. Among her criteria are that the walls are of emplékton type, they employ header-and-stretcher technique, the blocks are either quarry- or hammer-faced, the horizontal joints are precise, the vertical joins are either right-angled or slightly oblique, and, finally, the wall corners exhibit a sharp edge due to the alignment of block corners with drafted margins. To this general description, Pedersen (2010) adds the requirement of a double-corner bond in Hekatomnid towers.
itself originated in Karia during the Late Classical or Early Hellenistic era. Unfortunately, these hypotheses are based largely on stylistic arguments that are not supported by archaeological assemblages such as those found at Patara.117

A second problem with this argument remains that regional \textit{Geländemauer} wall systems, such as those at Patara, tend to display a bewildering array of masonry techniques along their surviving circuits. This suggests that their development as defensive systems progressed over an extended period of time. It seems safer, therefore, to suppose that the building remains of fortifications of this era furnish architectural palimpsests exhibiting numerous phases of remodeling, adaptation, repair, and reconstruction.118

No matter how well supported by historical texts or by regional evidence of patterns in design, any effort to force the visible evidence of multiple-phased construction into a single unified conceptualization remains hazardous.119

Two exceptions to this methodology emerge from Schmaltz’s research on the defenses of Kaunos in Karia, and Marksteiner’s research on Lycian fortifications.120 Schmaltz’s analysis carefully inventories distinctions in masonry technique, meter by meter, along the fortified perimeter of Kaunos. He combines this analysis, where possible, with sampling trenches at several points along the walls to recover datable foundation assemblages. Schmaltz identifies at least five building phases for the walls of Kaunos, phases extending from the Late Archaic era (ca. 500 B.C.) to the 2nd century b.C. The multiple stages of construction that can be identified in the \textit{Geländemauer} fortifications at Patara indicate a similar pattern of development. Marksteiner, meanwhile, relies on a variety of means, including the remarkable representations of fortified cities that appear in 4th-century b.C. Lycian reliefs, to reconstruct a highly convincing chronological sequence for the design of Lycian fortifications.121

Given that the remains, the historical record, and even the topographical settings of Karian and Lycian harbor settlements, such as Kaunos, closely resemble those at Patara, we will address the views of Marksteiner and Schmaltz in greater detail below. We cannot expect to exhaust the general debate regarding these broad and difficult questions. If, as we have attempted to demonstrate, the remains of the Tepecik Bastion date to the era of Hekatomnid occupation at Patara (ca. 360–334 B.C.), then it stands to reason that the masonry technique visible in the North Fortification Wall and the Bastion at Patara represents an architectural design, a blueprint, as

117 Pedersen’s excavation (2010, p. 285) of the foundation of the south tower of the Myndos gate revealed no pottery; he concedes (p. 287) that the south tower probably had two building phases. For the argument that ceramics found on the surface are inadequate for dating purposes, see Marksteiner 1997, pp. 111–159; Çevik and Varkıvanç 2000, p. 333; Çevik and Pimouguet-Pédarros 2010, p. 258.

118 Scholars such as McNicoll (1997, p. 45), Pimouguet-Pédarros (2000, pp. 86–87), and Pederson (2001–2002, pp. 108–110) readily concede as much, but they do not allow these obvious distinctions to interfere with their overall interpretation of fortified landscapes as “Hekatomnid.”

119 E.g., Pedersen (1994, p. 222; 2010, pp. 315–316) attempts to force Hekatomnid construction on an array of sites, including Halikarnassos, Theangelia, Latmos, Myndos, Priene, and even Samos. In several instances he argues that the visible variations in masonry technique reflect adaptations to the variable quality of stone available in the vicinity. Pimouguet-Pédarros’s explanations are equally problematic at times: e.g., her hypothesis (2000, p. 231) concerning a tower constructed by Macedonian forces of Alexander the Great at Halikarnassos.

120 Schmaltz 1991, 1994; Marksteiner 1997.

121 Marksteiner 1997.
it were, of Hekatomnid fortifications. Preliminarily, this would mean that regional fortifications employing the *emplekton* technique of headers and stretchers (sometimes “double bonded”) and hammer-faced ashlar blocks with drafted edges (as opposed to drafted margins) date to a later phase of development.

This, of course, remains to be seen. At the very least, it is hoped that the results of our investigation will inject an element of caution into these discussions, precisely because the architectural remains of the Tepecik Bastion at Patara are so well dated.

To investigate this matter, we need to consider briefly four issues: (1) the relationship of the Tepecik Bastion to the later phases of *Geländemauer* construction visible at Patara; (2) the relationship of the Bastion complex to contemporary evidence of fortifications elsewhere in Lycia; (3) the relationship of the masonry techniques employed in the Tepecik Bastion to masonry techniques employed in the *Geländemauer* fortifications at neighboring sites; and (4) the close relationship between the chronological development of the fortifications at Patara and those at Kaunos, where Hekatomnid influence is certain.

Distinct differences exist between the stone masonry of the Tepecik Bastion and that of the surviving trace of the *Geländemauer.* Along the lowest exposed courses of the circuit wall, the stone masonry consists of hammer-faced ashlar blocks similar in appearance to those in the Tepecik Bastion. Their courses, however, are discernibly more regular, their vertical joins tend to be perpendicular, there is no evidence of keying, no irregular courses, and the blocks themselves are dressed in a manner more closely resembling ashlar than pseudo-isodomic masonry (Fig. 57). As Kunze and Varkıvanç, who surveyed these remains, proceeded along the curtain wall to the fortifications on Doğucasıran, a number of complications presented

122. E.g., on the basis of the available literary evidence, it is conceivable that this later style of masonry, if not the *Geländemauer* system itself, was introduced by the Antigonids (Antigonus Monophthalmos and Demetrios Poliorketes), who ruled this region during the period immediately following the death of Alexander the Great (ca. 322–301 B.C.E.). Because of the extent of their financial resources and the size of their naval empire, these dynasts appear to have engaged in a widespread program of fortified harbor construction to protect naval forces throughout the region. Given the scope of their territorial empire, extending as it did from Cilicia and Phoenicia to Greece, the reluctance of scholars to posit an archaeological footprint for the Antigonids seems unjustified.

123. The isodomic upper courses of the circuit wall are clearly of the Roman era. The matter is complicated by a growing awareness that the curtain walls at Patara underwent extensive remodeling in ways that were not yet evident to Kunze and Varkıvanç, who did not have the advantage of soundings. Recent (unpublished) excavation in front of the curtain wall at a location 40 m east of the Roman triumphal arch revealed the remains of an unattached tower, possibly Hellenistic, standing at the level of the lower courses of the curtain wall. Our understanding of the *Geländemauer* at Patara will undoubtedly improve with time. Be that as it may, there are discernible differences in the masonry technique visible along the length of the curtain wall.

124. Kunze and Varkıvanç note (*Patara* I.1, p. 49) that the blocks are well dressed above and below to sit neatly in courses, and the edges are drafted with anathyrosis 0.15–0.25 m wide, with no evidence of couplings or tenons. In their drawings of the earliest towers, the inner faces of the blocks appear to be quarry-faced like Tepecik; there is, however, no visible evidence of *emplekton*-styled headers in the earthen fill. They conclude (p. 49): “Zwar datiert Th. Marksteiner die Befestigung in hellenistische Zeit, doch die von ihm und von A. Konecny erwähnten Merkmale lykischer Mauern wie Mauerstärke, Bearbeitung der Ansichtsseiten, Randschlag, Existenz von Binderblöcken etc. sprechen jedoch für eine Datierung in vorhel lenistische Zeit. Nach der Maurtechnik zu urteilen, könnte diese große Mauer in spätclassischer Zeit entstanden sein.” (Although Th. Marksteiner dates the fortifications to the Hellenistic period, as both he and A. Konecny observed regarding Lycian fortification walls in general, the strength of the wall, the construction of the exterior faces, the use of drafted margins, the existence of binding blocks, etc., all point to a date in the pre-Hellenistic period. Based on the style of the masonry technique, this large wall could conceivably date to the late Classical Era.)
themselves, including evidence of the remodeling of the defenses over time, not to mention the superimposed ruins of a Byzantine basilica. Amid these heavily altered remains, vestiges of stone masonry closely resembling that of the Tepecik Bastion are detectable in two surviving rectangular towers, which were labeled O1 and O2 by Kunze and Varkıvanç.125 Here the same sorts of masonry techniques are employed: keyed blocks and irregularly sized blocks, oversized blocks placed at the wall corners, and, as in the load-bearing corner construction visible in the North Fortification Wall, wall courses visibly disrupted by the use of large, irregularly joined blocks.126

The neighboring towers display remarkably varied construction techniques, including regularly dressed stone courses (with, at least in one instance, courses arranged in deep-and-narrow technique), pentagonal-shaped towers, and, most notably, a large polygonal tower projecting like a redoubt at the top of the hill.127 This tower was clearly intended to furnish enfilading fire against attacks on the curtain wall. It is also large enough (17.00 × 22.00 m) to have functioned as an artillery tower. In addition

125 Kunze and Varkıvanç’s plan of tower O1 (\textit{Patara} I.1, p. 23, fig. 12), showing a pentagonal tower, is questionable. Only two sides are actually extant; the rest lies under the remains of the Byzantine basilica.

126 \textit{Patara} I.1, pp. 32, 33, 35, figs. 29, 35, 40.

127 \textit{Patara} I.1, pp. 28–31. It is similar in design to the projecting tower of a medieval star fort.
to its unusual shape, the ground floor of this tower displays a row of five small loopholes for archery fire.128 The design and stonework of this tower are dramatically different from those of the Tepecik Bastion, just as the design of the loopholes contrasts with that of the large embrasure in the North Fortification Wall. In addition, the sheer number of towers recorded along the length of the \textit{Geländemauer} (19 in all), the fact that several of these are polygonal rather than rectangular in design, and the fact that one of them projects as an artillery platform at the top of the hill, reflect three of Marksteiner’s criteria for Hellenistic defensive construction in Lycia.129 In short, apart from the surviving vestiges of stone work visible in towers O1 and O2, there is little to suggest that the remains of the Pataran \textit{Geländemauer} date to the same era as the Tepecik Bastion. Towers O1 and O2 at Doğucasarı probably represent the vestiges of an earlier bastion similar in design to the Tepecik Bastion, and one constructed prior to the installation of the \textit{Geländemauer}. A likely date for the Doğucasarı bastion would necessarily coincide with that of the Tepecik Bastion. Whether or not the two bastions were connected by a curtain wall cannot be determined at this time; they, along with a possible third bastion on Kurşunlutepe, were possibly unattached.

Such an arrangement would be in keeping with Lycian fortification systems of the early 4th century B.C. as described by Marksteiner, and as revealed by various Lycian reliefs. According to Marksteiner, some of these reliefs were intended to represent ground-level views of the skyline of actual Lycian bastions, including those at Pinara, Tlos, and Limyra.130 The presence of isolated bastions on hills overlooking a city and/or its harbor appears to be a salient characteristic of Lycian defenses at this time.131 As we shall see when we discuss the defenses of Kaunos below, the existence of isolated hilltop bastions overlooking settlements may have been relatively commonplace in the region prior to the conquest of Alexander the Great. If the two presumed bastions, Tepecik and Doğucasarı, were constructed by the Hekatomnids during the period of their control over Lycia (360–334 B.C.), then it is also more than likely that they would have been garrisoned by Hekatomnid mercenaries (the ξένους μισθοφόρους of \textit{Arr. Anab.} 1.24.4).132

128 Patara I.1, pp. 28–31. The corner tower in particular stands in contrast: it is diamond-shaped, with even courses of very large limestone blocks, regularly dressed above and below, but tending toward trapezoidal in the vertical joins. Low on the wall, a single course of blocks is arranged in deep-and-narrow technique. The row of five archery loopholes is unique among the towers of this \textit{Geländemauer} (\textit{Patara} I.1, pp. 30–32, figs. 25, 27, 28). Loopholes are also visible in the curtain wall between towers O1 and O2 (p. 29). The inner face blocks are decidedly ashlar and well dressed, unlike the quarry-faced blocks in the Bastion.

129 Marksteiner 1997, pp. 163–172. In addition, the curtain wall at Patara displays a visibly indented trace, with several towers deliberately incorporated into the wall jogs at the point of indentation (esp. tower 07, but also towers 05, S7, S8, and S9). The study of pre-Roman defensive systems in Lycia is generally focused on central Lycia, with a limited number of studies in western Lycia. For fortifications in central Lycia, see Borchhardt 1975, pp. 45–56; McNicoll and Winikoff 1983; Konecny 1997; Marksteiner 1997; Çevik and Pimouguet-Pédarros 2010, 2011.

131 Marksteiner 1997, p. 151.

132 It is important to recall that earlier phases of defenses are visible on the Tepecik Acropolis, including a corridor revealed directly behind the embrasure in the North Fortification Wall at Tepecik (see n. 15, above). This feature appears to represent the vestiges of an earlier bastion, similar in design but smaller than the Tepecik Phase IVa Bastion. Based on the context materials discussed above, the Phase IVa Bastion appears to represent the Hekatomnid remodeling of an earlier fortification system.
The presence of such a mercenary garrison at Patara would conform to the historical record in Arrian that Alexander seized Patara ἐνδοθέντα, that is, that the city was taken from within, perhaps with the support of the local population. It would also explain the widespread evidence of destruction by fire in and around the Tepecik Bastion.

Assuming that the stone masonry visible in the Tepecik Bastion and in towers O1 and O2 on Doğucasarı is Hekatomnid, it stands to reason that similar stone construction would be visible at other sites that were fortified by these rulers. A cursory examination of the evidence indicates that vestiges of this style of masonry are visible in the fortifications at Antiphellos, Knidos (Fig. 58), Kaunos (Fig. 59), and possibly Halikarnassos. Limitations of space prevent an exhaustive discussion of these remains. For the sake of brevity, we will restrict our discussion to the closest example, namely, the defensive remains at nearby Karian Kaunos. Not only does the topography of this harbor settlement resemble that at Patara, but the presence of Hekatomnid authority at this time is certain.

As is typical of fortified settlements in the region, the defenses at Kaunos are complicated by a significant record of remodeling and repairs, all carefully inventoried by Schmaltz (Fig. 60). Schmaltz also attempted to buttress his analysis of the defensive construction with repeated test trenches at wall-foundations. In most instances, the bewildering array of repairs and remodelings resulted in fills with wide chronological parameters, but a few did generate good contexts. In general, Schmaltz described the defenses of Kaunos as having two significant phases: an earlier phase of stone fortifications employing a crude form of polygonal stone masonry, followed by a more extensive phase of Geländemauer defenses constructed in finely dressed ashlar masonry. Based on ceramic remains recovered in several locations, he assigned the polygonal masonry to the late 6th–early 5th century B.C.; the later phase he dated to the late 3rd century B.C., based on his assumption that the defenses were extensively overhauled following a seismic event. He associated this event with an earthquake that struck nearby Rhodes in 227 B.C. Schmaltz identified the remains of the early polygonal walls in at least four locations. A long stretch of curtain wall appears to descend from the chimney-rock acropolis overlooking the site on its east to a low ridge directly overlooking the harbor on its south side (Schmaltz’s South Acropolis).

133. Dated to the Hellenistic period by Marksteiner (1997, p. 164, fig. 203, pl. 73).
134. The photo (Fig. 58) is of the curtain wall south of the military harbor as it ascends the ridge from the Late Hellenistic round tower overlooking the harbor (see McNicoll 1997, p. 38).
135. Pedersen 1994, esp. p. 228, fig. 7; 2010, p. 291, fig. 19, tower 10. Admittedly, there are very few examples of the Tepecik technique in the photographs published by Pedersen.
136. As revealed by the finds of inscribed statue bases to Hekatomnos and Mausolos; see Pimouguet-Pedarros 2000, pp. 242–243, n. 890.
138. See, e.g., Schmaltz 1991, p. 137, for the remains of an apparent Archaic shrine recovered near the polygonal wall of the South Acropolis; p. 141, for a stamped Rhodian amphora handle dating the remodeling of a tower on the South Acropolis to the mid-3rd century B.C. His other soundings generated mixed results.
140. Schmaltz 1991, pp. 123–143. Here, two later towers as well as a wall descending to the harbor at the end of the promontory, all of good ashlar construction, are visible. In addition, there is a Byzantine fortified enclosure harboring earlier remains, as well as a large platform built of isodomic ashlar construction to the south.
Schmaltz also observed vestiges of polygonal masonry incorporated into a battery of gates and bastions preserved on the low ridge overlooking the west side of the harbor (the West Bastion). He observed a third area of polygonal masonry in a circular walled-in bastion at the crest of the ridge northwest of the city (Sivri Hisar). Lastly, Schmaltz identified a walled wall and bastion are visible in the remodeling; see Schmaltz 1991, p. 145.

141. Schmaltz 1991, pp. 137–157. The complex includes two large artillery towers constructed in the same ashlar masonry technique as the Geländemauer. Vestiges of the earlier polygonal

142. Schmaltz 1994, pp. 188–191. This complex was likewise remodeled into an ashlar-constructed tower.
complex at the town center, where a U-shaped structure employing polygonal masonry appears to have been built into the hillside directly north of the Roman-era bath. Like the other three defenses, this complex was extensively remodeled over time. Schmaltz argues that this particular fortification marked the northern perimeter of an admittedly small community settled in the vicinity of the bath, the palaestra, and the theater during the Archaic period.

According to Schmaltz, the identification of the various phases of the defenses at Kaunos is complicated by the extensive remodeling that occurred during the construction of the site’s massive Geländemauer. This curtain wall extends 820 m northward from the area of the West Bastion to the bastion at Sivri Hisar. From Sivri Hisar, it continues along a meandering course northward and eastward for 2.7 km, following the natural slope of the ridge along the northern perimeter of the site. It eventually reaches a promontory northeast of the settlement overlooking the Dalyan River. According to Schmaltz, this length of curtain wall, constructed of good ashlar masonry, appears to end at an enclosed bastion on a height directly overlooking the East Harbor that now faces the river. Based on evidence of destruction and repairs observed in all four areas of the

143. Schmaltz 1994, pp. 186, 192–201. He records an additional vestige of polygonal masonry below the terrace wall of the palaestra complex adjoining the bath. On the hill above these remains lie those of a Corinthian temple of later date.

146. It possibly extended to the northern end of the so-called East Harbor, where Schmaltz (1994, p. 188) recorded a freestanding tower of polygonal masonry near the water’s edge.

147. Schmaltz 1994, pp. 188–189. The layout seems remarkably similar to that at Patara.
Kaunos defenses (South Acropolis, West Bastion, Sivri Hisar, and town center), Schmaltz assigns nearly all the modifications, including the construction of the Geländemauer itself, to the late 3rd century B.C.148 For the most part, these remodeled defenses consist of isodomic ashlar masonry. The blocks are well dressed with anathyrosis above and below, and they display smoothly bossed exterior faces with sharply drafted edges (as opposed to drafted margins). In many locations the blocks were bonded with lead couplings. The wall courses are regular and arranged in a pattern of headers and stretchers.

Although Schmaltz wants to assign these developments to the late 3rd century B.C., he acknowledges that vestiges of additional forms of stone masonry complicate the remodeling considerably. Near the modified gate at the north end of the West Bastion, for example, a tower complex exhibits an elaborate join of a wall constructed of ashlar masonry to a long stretch of wall constructed of polygonal masonry. This polygonal curtain wall extends from the gate tower all the way to the bastion at Sivri Hisar. Unlike the polygonal masonry visible elsewhere in the defenses, this masonry employs smaller, more evenly dressed blocks; the joints between the blocks are carefully dressed with toothed-chisel margins.149 In addition to this undated stretch of masonry, several places along the defenses display the same sort of masonry visible in the Bastion at Patara. Step-like, keyed blocks and irregular courses of variously sized blocks are visible along a stretch of the west curtain wall at Bastion W IV.150 Another segment of masonry is visible in the curtain wall near the Sivri Hisar bastion,151 a third small vestige at the base of the corner tower in the U-shaped complex north of the Roman bath,152 and a fourth at the corner of a terraced platform inside the Byzantine citadel on the South Acropolis (Fig. 59). In several instances, the courses of pseudo-isodomic masonry with keyed blocks sit below the remodeled courses of isodomic masonry, indicating that it represents an earlier phase of construction. The sections visible at Sivri Hisar (A7 and A8), however, appear to rest above courses of well-dressed ashlar blocks, indicating an area of likely repairs to the Geländemauer. This may indicate that the two styles of stone masonry were contemporary.153

The remodeling of the fortified complex north of the bath is likewise complicated by the erection of a tower in isodomic masonry directly over the pseudo-isodomic foundation, as well as by a visible join to an original segment of polygonal masonry.154 At this corner of the structure, test trenches revealed a mixed fill that included Attic black-slipped and additional black-slipped sherds dated to the 4th century B.C. Although Schmaltz acknowledges the presence of these vestiges of pseudo-isodamic masonry, he dismisses them as poorly constructed phases of ashlar masonry, without further comment.155 Pimouguet-Pédarros, on the other hand, points to their existence as proof of an intermediate phase of construction between that of the rough-hewn polygonal masonry and the more finely dressed isodomic ashlar masonry.156 She also argues that the design of the Geländemauer, with its limited number of towers and even fewer postern gates, points to a “passive defense” design consistent with the 4th century B.C.157 Given such broad disagreement, it is fair to ask whether or not the masonry

148 Schmaltz 1991, pp. 137–158 (extensive remodeling of the West Bastion, particularly the city gate). Based on a reused dedication of the 4th century B.C., Schmaltz (2010, p. 320) allows for the reconstruction of the west city gate in the 4th century; see also 1994, p. 189 (remodeling of Sivri Hisar). He demonstrates the construction of a number of large towers in the West Bastion and on the South Acropolis, in some instances directly over the polygonal wall, as artillery platforms.

149 Even Schmaltz (1994, pp. 189–191, fig. 4) acknowledges that this segment of the curtain looks different.

150 Schmaltz 2010, p. 327, fig. 6.

151 Schmaltz 2010, p. 325, fig. 3, West Wall in section A-7.

152 Schmaltz 1994, p. 196, fig. 7.

153 Perhaps one question was vernacular, the other imported.

154 The last-mentioned polygonal masonry style resembles that in the west wall, in fact.

156 Pimouguet-Pédarros 2000, p. 251.

157 Pimouguet-Pédarros 2000, pp. 250–252. On the number of doors, see Pimouguet-Pédarros 2000, p. 249 (at least five); Schmaltz 1994, p. 187 (four towers flanked by gates along the northern extent of the Geländemauer).
techniques visible in the defenses at Kaunos reflect sequential phases in chronological construction.

Schmaltz posits that the original polygonal-walled defenses of Kaunos provided less protection for the city and its harbors than the later Geländemauer.\(^{158}\) How these defenses were arranged is a good question. Schmaltz proposes that there was a western flanking wall in the area of the later West Bastion, another U-shaped construction at the foot of the hill north of the bath complex, and a third defense in the form of a curtain wall extending from the foot of the acropolis to the South Acropolis overlooking the harbor. If this is correct, then the extent of the original defended perimeter at Kaunos was indeed significantly smaller in area than that enclosed by the later Geländemauer. In addition, Schmaltz allows for the likelihood of freestanding bastions—particularly the circular bastion at Sivri Hisar.\(^{159}\) Much like the defenses at Patara, in other words, the fortifications of Kaunos at the time of the Hekatomnids appear to have included freestanding bastions on the ridges directly overlooking the city (Sivri Hisar, the acropolis proper), in addition to or in lieu of an enclosed urban defense system. It is worth repeating that the style of masonry visible in the Tepecik bastion at Patara is likewise visible in vestiges of the Kaunian wall near Sivri Hisar, the South Acropolis, and the fortified complex near the Roman bath.

What makes this particularly intriguing is the existence of historical data from the end of the 4th century B.C., which indicates that freestanding bastions played a significant role in the defense of Kaunos. In two separate passages (19.75.5, 20.27.2), Diodoros reports that the city was overrun by the forces of Alexander's successors. When Antigonos assaulted Kaunos in 313 B.C., Diodoros reports that he was unable to take the heights (ἄκρα) overlooking the city and was forced to invest it. Later, in 309 B.C., when Ptolemy attacked Kaunos, his forces likewise overran the city without difficulty, but they encountered stiff resistance from garrisons manning two bastions named the Heraklion and the Persikon. His men were eventually able to take one of these by force, but the second one held out until its defenders surrendered of their own accord. Presumably, these named bastions were unattached to the original circuit wall, as indicated by their traces above the terrace wall of the palaestra, and that there was possibly another unattached tower or fort north of the East Harbor.

\(^{159}\) Schmaltz 1994, pp. 188, 192–201. Despite the confusion caused by the positioning of a later aqueduct along the slope descending from Sivri Hisar to the Corinthian temple and the U-shaped building, and despite an exhaustive inspection, Schmaltz saw no evidence of a curtain wall extending from the city center to Sivri Hisar.

Schmaltz (pp. 188–189) also posits that the U-shaped building was unattached to the original circuit wall, as indicated by its trace below the terrace wall of the palaestra, and that there was possibly another unattached tower or fort north of the East Harbor.

\(^{160}\) They were possibly associated with nearby shrines. One may recall the remains of a shrine recovered by Schmaltz at the wall foundation on the South Acropolis (1991, pp. 134–137), the Corinthian temple on the hill above the U-shaped building, and yet another shrine located near Sivri Hisar (Schmaltz 1994, p. 194).

\(^{161}\) Pimouguet-Pédarros (2000, p. 246) cites a fanciful account by Polyainos (3.16) to explain the Ptolemaic conquest.

159. Schmaltz 1994, pp. 188, 192–201. Despite the confusion caused by the positioning of a later aqueduct along the slope descending from Sivri Hisar to the Corinthian temple and the U-shaped building, and despite an exhaustive inspection, Schmaltz saw no evidence of a curtain wall extending from the city center to Sivri Hisar.

Schmaltz (pp. 188–189) also posits that the U-shaped building was unattached to the original circuit wall, as indicated by its trace below the terrace wall of the palaestra, and that there was possibly another unattached tower or fort north of the East Harbor.

160. They were possibly associated with nearby shrines. One may recall the remains of a shrine recovered by Schmaltz at the wall foundation on the South Acropolis (1991, pp. 134–137), the Corinthian temple on the hill above the U-shaped building, and yet another shrine located near Sivri Hisar (Schmaltz 1994, p. 194).

161. Pimouguet-Pédarros (2000, p. 246) cites a fanciful account by Polyainos (3.16) to explain the Ptolemaic conquest.
argument for a network of narrowly confined curtain defenses supported by an array of outlying hilltop bastions—bastions that were later incorporated into the Geländemauer that we see today—more accurately accommodates the requirements of the historical record. If this reconstruction is correct, then once again the evidence of sequential phases in the development of fortifications at a city along the Karian-Lycian frontier reveals defenses more in keeping with the 4th century b.c. remains that are visible at Patara and elsewhere in Lycia.

CONCLUSIONS

The excavation of the Bastion and the North Fortification Wall on the Tepecik acropolis at Patara furnishes new and important criteria for the dating of defensive complexes in southwestern Anatolia. Our investigation has demonstrated that a style of stone masonry visible in the defenses of Patara can be dated to the mid-4th century b.c. This dating offers a useful point of reference for the identification of other styles of masonry visible in the region. Based on the surviving vestiges of the masonry technique at the Tepecik Bastion and at Doğucasarı, our reconstruction of these defenses also indicates that freestanding bastions existed at Patara at the time of Alexander’s conquest, similar in form to those visible elsewhere in Lycia. The differences between the masonry technique visible in the bastions at Patara and that of the Geländemauer certainly indicate that the latter fortification system is later in date. The construction of the bastions at Patara was possibly the result of a Hekatomnid decision to impose a garrison on the settlement.

Most importantly, the destruction level containing the sling bullet inscribed with the name of Alexander, son of Philip, furnishes a new and important datum point for the fine-ware pottery, amphoras, and terracottas found in the destruction level of the Phase IVa Bastion. We have already observed the similarities that exist between the fine wares and amphoras of the Phase IVa Bastion, for example, and those found in the Kyrenia shipwreck off the north coast of Cyprus. The Kyrenia context is currently dated to the early 3rd century b.c. Several additional comparanda discussed in the catalogue, which are generally dated to the 4th century or the late 4th century b.c., likely warrant chronological reevaluation based on the date furnished by this assemblage. This, of course, assumes that our assignment of the inscribed sling bullet to Alexander the Great, rather than to his two immediate successors, is correct (on this, see the discussion in the appendix).

The excavation of the Bastion has also yielded rare examples of weapons and military gear—including the lead sling bullet itself, the bugle, and various projectile points—that were appropriate to the context of a garrison under siege. Although it was never our intention to resolve the questions raised in these pages about Hekatomnid fortifications or the advent of Geländemauer defenses, we hope that our discussion will furnish a useful point of reference for their continued investigation.

162. See Katzev and Swiney, forthcoming.
APPENDIX

THE HISTORICAL CONTEXT OF THE DESTRUCTION OF THE TEPECIK BASTION

This appendix explores the historical and material evidence in support of the argument that the Tepecik Bastion was overrun by the forces of Alexander the Great rather than by those of his successors, Alexander IV and Philip III Arrhidaios. Four forms of evidence argue in favor of our interpretation that the inscribed sling bullet (64) found in the Phase IVa destruction level of the Bastion refers to Alexander the Great. These include the names of Alexander and Philip inscribed on the bullet itself; the textual record of Alexander’s advance through Lycia, which clearly shows that he seized Patara; the fact that the preponderance of the material found in the Phase IVa destruction level of the Bastion clearly dates to the late 4th century B.C.; and, finally, the additional finds of fire-damaged military hardware in the immediate vicinity of the Bastion on Tepecik, indicating that the Bastion was destroyed as a result of a military onslaught at this time.

The first three points have been adequately addressed in the preceding pages. With respect to the pottery, we would merely add that the comparanda that we have presented in the discussion above points emphatically to the second half of 4th century B.C. as the moment of the destruction of the Phase IVa level of the Bastion. In other words, the uniformity of this evidence and its wealth of detail confirms a general date for the destruction near the moment of Alexander’s conquest of Lycia (334 B.C.). Admittedly, it is difficult to pinpoint a date of 334 versus one closer to 322–319 B.C. (the First War of Succession) based solely on the assemblages inside the Bastion. The one anomaly in the ceramic assemblage of the Phase IVa destruction level worth mentioning in this regard is the Achaemenid bowl (53). The presence of this artifact may indicate that the occupants of the Bastion at the time of its destruction enjoyed access to fashions in ceramic production that were current along the margins of Persian trading networks, as opposed to those of the Aegean. Had Patara at the time of the destruction of the Bastion been under the control of Macedonian authorities, one could argue that such a form would not be present. The presence of an Achaemenid bowl in and of itself, however, is not enough to confirm the presence of a Persian garrison at the Tepecik Bastion at this time.163 So we must move on.

163. See Dusinberre (1999, p. 78), who argues that Achaemenid bowls were still being used at Sardis at the end of the 3rd century B.C. Nonetheless, as noted above, the comparanda for our bowl suggests a 4th-century B.C. date.
Since the dating of the material recovered from the Tepecik Bastion cannot eliminate the possibility that the garrison manning the Bastion at the time of its destruction belonged to Alexander’s successors, Alexander IV and Philip Arrhidaios, we need to consider what additional evidence might confirm or eliminate this alternative possibility. The greatest obstacle to this scenario remains the lack of any specific evidence, textual or otherwise, to support it. Reconstruction of events that may or may not have occurred in Lycia requires the consideration of anecdotal information hamstrung by its own limitations. For the sake of argument, we will enumerate the several points relevant to the problem.

To begin with, we know that Antigonos Monophthalmos (382–301 B.C.), who had governed Greater Phrygia as satrap to Alexander the Great during the Macedonian campaigns, was confirmed in his command of Phrygia, Lycia, and Pamphylia by the agreements reached by Alexander’s army at Babylon in 323 B.C.\(^\text{164}\) We also know that Antigonos was indicted later that year by the Macedonian regent, Perdikkas (ca. 355–320 B.C.), acting in the name of the Macedonian kings, for failing to obey expressed orders to assist with Eumenes’ operations in Cappadocia. Antigonos fled to Europe rather than respond to Perdikkas’s summons. On report of his flight, Justin asserts that Perdikkas reassigned Antigonos’s territories, including Lycia, to Eumenes of Kardia.\(^\text{165}\) Antigonos was able to persuade Antipater and Krateros (who were quickly joined by Lysimachos and Ptolemy) to confront the growing ambitions of Perdikkas. We know that Antigonos returned to Karia with 10 Athenian war ships and 3,000 men in 322 B.C., and that he was immediately supported by the satraps of Karia and Ionia. He seized Ephesos and nearly captured Eumenes himself at Sardis. He then went to the Hellespont to meet with Antipater and Krateros, where it was agreed that Krateros would confront Eumenes, Antipater would go to Cilicia in pursuit of Perdikkas, and Antigonos would go to Cyprus to combat Perdikkas’s officer, Aristonos.\(^\text{166}\)

We also know that when Perdikkas was assassinated by his officers on the Nile River in ca. 320 B.C., Antigonos was campaigning in Cyprus against the “Perdikkan” forces led by Aristonos. One thing we do not know, however, is the path he took to arrive there.\(^\text{167}\) Following the death of Perdikkas, Antigonos sailed from Cyprus to Triparadeisos in Cilicia to join Antipater, the two Macedonian kings, and the combined Macedonian forces. There they reorganized the command structure of the empire.\(^\text{168}\) As part of this agreement, Antigonos was not only restored to his authority over Phrygia and Lycia, but he was named στρατηγὸς τῆς Βασιλικῆς δυνάμεως and was awarded the guardianship of the two kings.\(^\text{169}\) He also

\(^{164}\) Diod. Sic. 18.3; Just. \textit{Epit.} 13.4; Oros. 3.23; Dexippos, FGrH F8; Wehrli 1969, p. 32. Originally, Lycia and Pamphylia had been assigned by Alexander to Nearchos, but the latter was later summoned by the king to serve in India. At that time Antigonos probably assumed responsibility for Lycia in his absence.

\(^{165}\) Just. \textit{Epit.} 13.6.14. In 322 B.C., Paphlagonia, Karia, Lycia, and Phrygia were assigned by the “royalists” to Eumenes.

\(^{166}\) Arr. \textit{Succ.} 1.30; cf. 24.6; Heckel 1992, p. 54.

\(^{167}\) He may have sailed with his warships from the Hellespont, where he met with Antipater and Krateros after they landed, or, equally likely, he may have marched with Antipater overland to Cilicia and recruited naval forces from there with which to assault the Perdikkas forces on Cyprus. Wehrli (1969), Billows (1990, p. 66), and Heckel (1992, p. 54) do not venture any discussion of this question.

\(^{168}\) Billows (1990, p. 71) dates the Triparadeisos summit to July of 320 B.C.

requested and received authority to suppress the remaining forces loyal to Perdikkas in the region. In other words, Antigonos’s status at this point passed from that of a declared “outlaw” of the state to one of guardian of the two kings, second in command only to the general, Antipater. Because of the concerns expressed by Antipater’s son, Kassander, this situation was quickly adjusted.

Before Antipater returned to Macedonia, Antigonos met with him again at the Hellespont, where it was decided that Antipater would assume responsibility for the kings and return with them to Macedonia, while Antigonos would remain in Asia Minor with the office of ἐπίσκοπος τῆς ὅλης Ἀσίας, that is, as commander in chief of all Macedonian forces outside Europe. Antigonos’s main responsibility over the next few years would be to suppress the remaining elements of the “royalist” or Perdikkkan party. The principal surviving figures of this faction were Eumenes, who was still at large in Phrygia, Alketas, the brother of Perdikkas, who was also at large in Phrygia, and Attalos, the former brother-in-law of Perdikkas, who was in Tyre, preparing to sail for Karia. Following the demise of Perdikkas, Attalos assembled a sizeable force of 10,000 foot and 800 cavalry, together with a war chest of 800 talents at Tyre in Phoenicia. He had boldly visited the assembled forces at Triparadeisos and nearly succeeded in inciting a mutiny.

Attalos then departed Tyre by sea in a failed attempt to seize Rhodes, Kaunos, and Knidos. Defeated by the Rhodians in Karian waters, he abandoned his fleet and marched over land to join Alketas in the south Anatolian highlands, where together they set to work rebuilding the Perdikkkan power base in Pisidia. Although these two generals proved unwilling to cooperate with Eumenes, they remained a significant threat to Antigonos’s authority until their defeat and demise at Kretopolis (Pisidia) in 319 b.c. Antigonos then left the region altogether for three years to pursue the fleeing army of Eumenes to Iran. By the time he returned to Cilicia in 315 b.c., King Philip Arrhidaios was dead (317 b.c.). His death provides an absolute terminus ante quem for the inscribed sling bullet found in the Phase IVa destruction level of the Bastion at Patara. In addition, we know that Patara was under the control of Antigonos in ca. 313 b.c., when his admiral Polykleitos mobilized a combined land and sea force that was ultimately ambushed by the Ptolemaic general Theodotos at the Battle of Aphrodisias. We may safely assume, therefore, that Antigonos had seized control of Patara prior to this.

Within these parameters there are two possible scenarios for a conflict at Patara that may have involved the sling bullet inscribed with the names of Alexander and Philip. One scenario posits that Antigonos stormed Patara by sea in 322 b.c. as he made his way from the Hellespont to Cyprus, in which case the sling bullet possibly belonged to a garrison of Perdikkkan supporters. The other scenario posits that Antigonos’s officer, Nearchos, stormed Patara in 319 b.c., perhaps when he was mopping up the remnants of Attalos’s naval force in Lycian waters, in which case the sling bullet would have belonged to Nearchos’s forces, now acting in the name of the two kings.

Each of these scenarios presents its own set of difficulties. For example, the first scenario assumes that conflict erupted at Patara between forces loyal to Antigonos and those loyal to the royalists (Perdikkans) prior to the

170. Antigonos demanded and received the job of dealing with these Perdikkkan remnants, thus bringing the war to a close; see Arr. Succ. 1.38.

171. Kassander had been appointed Chiliarc of the Horse, or second in command to Antigonos; see Diod. Sic. 18.40.1; Arr. Succ. 1.42–43; Billows 1990, p. 71.

death of Perdikkas in ca. 320 B.C., a conflict that is altogether unrecorded in the historical record. If this were the case, Perdikkian forces would have had to seize the Bastion at Patara immediately following Antigonus's flight to Europe, which is possible given that the province of Lycia had been reassigned by Perdikkas to Eumenes. Such forces might have used sling bullets inscribed in the name of the two kings to legitimize their actions to soldiers loyal to the "outlawed" satrap Antigonus, who were struggling to defend the Bastion. Given the uneasy circumstances of this Macedonian civil war, the claim to royal legitimacy may very well have been used to sway the minds of soldiers caught in the cross fire. Conversely, if we assume that Antigonus sailed from the Hellespont to Cyprus in 321 B.C., his forces could conceivably have overrun the Bastion (assuming it had already been seized by his adversaries). In this case, the sling bullet would have been used by the Perdikkan defenders inside the fortified Tepecik acropolis, where, as we have noted, it was found among clusters of stone sling bullets. The chief problems with this scenario remain the uncertainty that Antigonus actually went by sea to Cyprus, and the complete lack of historical evidence for the occurrence of a conflict at Patara or anywhere else in Lycia at this time. To make this scenario work, we are forced essentially to construct events from thin air.

The second scenario, that Antigonus's officer, Nearchos, stormed Patara in 319 B.C., seems more likely. To begin with, we know that at the conference at Triparadeisos Perdikkas's brother, Alketas, and some 50 other Macedonian officers were declared outlaws by the Macedonian military assembly. At the same time, Alketas and several of his supporters were attempting to coordinate efforts with Eumenes in Phrygia; when these efforts failed, they relocated their forces to the eastern highlands of Karia, where they appear to have anticipated the arrival of Attalos’s naval force. After being defeated by the Rhodians at sea, Attalos appears to have abandoned his fleet and to have marched inland with his sizeable force to join Alketas in Karia. They then withdrew to a stronger position in Pisidia, where they were ultimately defeated by Antigonus at Kretopolis in 319 B.C. Precisely what happened to the remnants of Attalos’s fleet remains a mystery. Diodorus (18.41.7) makes clear that after Antigonus defeated Eumenes and trapped him in the fortress of Nora, high in the Taurus mountains, he turned his attention to Alketas and Attalos in Pisidia. Diodorus emphasizes at this point that these two commanders were still in command of the whole fleet, which is typically interpreted as meaning that they were still in command of the Perdikkian naval forces brought by Attalos from Tyre. Presumably, these forces were still at large, and some have suggested that they were at anchor somewhere in the vicinity of Lycia or Pamphylia.

Such a hypothesis fits nicely with an anecdote preserved in Polyainos (5.35) about Nearchos, the former admiral of Alexander the Great, who had by now become an adherent of Antigonus and Demetrius. According to Polyainos, Nearchos was sailing in Lycian waters, possibly at this time, and relied on treachery to deceive an old friend who was commanding a garrison at Lycian Telmessos. Although the anecdote is undated, Billows is willing to associate it with the events of 319 B.C. Thus, in 319 B.C. it is 174. Plut. Eum. 8.4; Arr. Succ. 1.39–42.
175. Arr. Succ. 1.37, 41. Their position in highland Karia was sufficiently strong to repulse an attack by Asander, the satrap of Karia.
176. Perdikkas had previously conducted operations and imposed garrisons there in 322 B.C.; see Diod. Sic. 18.22.1–8; Billows 1990, pp. 77–79.
178. The fact that the garrison commander, Antipatrides, was described as an old friend is also consistent with the circumstances of a Macedonian civil war.
conceivable that naval activity was occurring in Lycian waters, with naval forces of both the Perdikkian general, Attalos, and the Antigonid general, Nearchos, operating in the vicinity of Patara. If so, perhaps Nearchos (or another officer working on behalf of Antigonos, who was now ἐπίσκοπος τῆς ὅλης Ἀσίας and a supporter of the Macedonian kings), stormed the Bastion at Patara that was garrisoned by forces loyal to Alketas and Attalos.

Again, it needs to be emphasized that these scenarios are hypothetical, not certain. If the second scenario is correct, the sling bullet inscribed with the names of the two kings would have been employed by forces loyal to Antigonos and would have been fired into the Bastion from outside. While this seems more likely than the other one—if only because we possess historical evidence of naval activity in the vicinity—problems persist. First, there is no evidence to suggest that Antigonos ever relied on the names of the kings to express his authority at this or any other phase of the conflict. On the contrary, the sources speak universally of his innate arrogance and his tendency to scorn the legitimacy of the kings. Second, the anecdote about Nearchos seizing Telmessos is farcical, undated, and hardly suitable as the basis for a convincing argument. And finally, with respect to either scenario, we are entitled to ask why we need to construct so many hypothetical events on such meager grounds simply to explain the presence of a sling bullet inscribed jointly with the names Alexander and Philip in the Phase IVa destruction level of the Patara Bastion. It is far easier and simpler to suppose that the sling bullet was used by forces fighting on behalf of Alexander the Great in 334 B.C. Not only do we know that Alexander passed through the region at this time and seized Patara, but we have epigraphical comparanda to show that his father, Philip II, and his generals inscribed their names on projectiles such as these. For these reasons, we remain skeptical of any explanation for the destruction of the Bastion at Patara other than the most obvious one, namely, that an assault was conducted in 334 B.C. by the Macedonian army of Alexander the Great himself.

180. See Plut. Demetr. 28; also Diod. Sic. 18.41.4–5, 50.1; 21.1.1; and esp. 18.52.7 (319 B.C.), when Antigonos confiscated for his own use four treasury ships at Ephesos conveying 600 talents of silver to the kings in Macedonia. Cf. Heckl 1992, p. 55.
181. Polyainos (5.35) states that Nearchos dispatched female musicians with slaves concealing weapons into the citadel to overwhelm the garrison.
REFERENCES

Corinth = Corinth: Results of Excavations Conducted by the American School of Classical Studies at Athens IV.2 = O. Broneer, Terracotta Lamps, Cambridge, Mass. 1930.

Deshayes, J. 1963. La nécropole de Ktima (BAHBeyrouth 75), Paris.

Kerameikos IX = U. Knigge, Der Süd- bügel (Kerameikos IX), Berlin 1976.

Kerameikos XV = B. Vienneel-Schürb, Die figürlichen Terrakotten 1: Spätmykenisch bis spätthellistisch (Kerameikos XV), Munich 1997.

Landskron, A. 2015. Das Herron von Tysa: Ein Denkmal in Lykien zwischen Ost und West. Untersuchungen zu Bildschmuck, Bauform,
und Grabinhaber (Schriften des Kunsthistorischen Museums 13), Vienna.

Erkan Dündar

Kahramanmaraş Sütçü İmam Üniversitesi
fen-e debiyat fakültesi, arkeoloji bölümu
avşar yerleşkesi, kahramanmaraş
TR-46100
turkey

dundarerkan@gmail.com

Nicholas K. Rauh

Purdue University
school of languages and culture
sc 211, 640 oval drive
west lafayette, indiana 47907
rauhn@purdue.edu