Program Committee

Chairman: Paolo Barberi (President of the EWRS)
Members: Josef Soukup (Scientific Secretary of the EWRS)
 László Radics (Vice President of the EWRS)

Session Organizers

H. Kraehmer Bayer CropScience, AG Industriepark Hoechst Frankfurt am Main Germany
H. Darmency INRA, UMR1347, Agroécologie, BP86510, 21065 Dijon, France
M. Vurro Istituto di Scienze delle Produzioni Alimentari CNR, via Amendola, Bari, Italy
L. Bastiaans Crop and Weed Ecology Group, Dept. of Plant Sciences, Wageningen University, Wageningen, The Netherlands
G. Economou Faculty of Crop Production Science, Agricultural University of Athens, Iera Odos Str., Athens
E. Pannacci Department of Agricultural and Environmental Sciences, University of Perugia, Borgo XX Giugno 7 Perugia
B. Melander Department of Integrated Pest Management, University of Aarhus, Forsøgsvej Slagelse
P. Hatcher School of Biological Sciences, Plant Science Laboratories, University of Reading, GB - Reading
P. Kudsk Department of Integrated Pest Management, University of Aarhus Forsøgsvej 1, Slagelse
N. Uygur Department of Plant Protection, University of Cukurova, Adana, Turkey
P. Neve School of Life Sciences, University of Warwick, CV4 7AL, Coventry, United Kingdom
B. Rubin Faculty of Agricultural, Food and Environmental Sciences, Hebrew University of Jerusalem, RH Smith Inst. Plant Sci. & Genetics, Rehovot
S. Christensen University of Copenhagen, Faculty of Life Sciences Department of Agriculture and Ecology, Høj bakkegård Alle, Taastrup
B. Gerowitt Insitute for Land Use, University of Rostock, Satower Str. Rostock
Local Organizing Committee
Dr. Hüsrev MENNAN Ondokuz Mayis University (Co-Chairman)
Dr. Masum BURAK Ministry of Food, Agriculture and Livestock (Co-Chairman)
Dr. Birol AKBAS Ministry of Food, Agriculture and Livestock
Dr. M. Selçuk BASARAN Ministry of Food, Agriculture and Livestock
Dr. Nevzat BIRISIK Ministry of Food, Agriculture and Livestock
Dr. Dogan ISIK Erciyes University
Dr. Emine KAYA-ALTOP Ondokuz Mayis University
Dr. Mathieu NGOUAJIO Michigan State University

SPONSORS
Ondokuz Mayis University
EWRS
Ondokuz Mayis University, Agriculture Faculty
Ministry of Food, Agriculture and Livestock
Turkish Weed Science Society
General Directorate of Agricultural Research and Policy
Syngenta
Dow AgroSciences
ENTOSAV
BAYER
BASF
Agrobest
ORSAM
KUTSAN
TÜBİTAK
Investigation of allelopathic effect of some plant oils on germination of common vetch (*Vicia sativa*) and redroot pigweed (*Amaranthus retroflexus*)

Y.E. Kitiş, Y.E. Eser
Süleyman Demirel University, Faculty of Agriculture, Plant Protection Department, 32260 Isparta, Turkey
emrekitis@sdu.edu.tr

Common vetch (*Vicia sativa* L.) and redroot pigweed (*Amaranthus retroflexus* L.) are important weed species which are problem in many crops. In this study, allelopathic effects of plant oils belonging to different plant species on seed germination of common vetch and redroot pigweed were investigated. For this purpose, 12 different plant species (anise (*Illicium verum* Hook.f.), fennel (*Foeniculum vulgare* Mill.), castor oil plant (*Ricinus communis* L.), mustard (*Brassica alba* L.), black seed (*Nigella sativa* L.), clove (*Syzygium aromaticum* (L.) Merrill & Perry), eucalyptus (*Eucalyptus globulus* Labill.), peppermint (*Mentha piperita* L.), basil (*Ocimum basilicum* L.), orange (*Citrus sinensis* (L.) Osbeck.), grapefruit (*Citrus paradisi* Macfadd.), lemon (*Citrus limon* (L.) Burm.f.))’s oils obtained by steam distillation and cold pressing methods were applied at various doses on seeds of these two weed species. Twenty-five seeds for common vetch and a hundred seeds for redroot pigweed put into each nine cm diameter sterile petri dishes. Different doses (0, 5µℓ, 10µℓ and 15µℓ) of plant oils were mixed with ten ml pure water and applied to petri dishes. Seeds of common vetch and redroot pigweed left to germinate at 20 °C and 30 °C, respectively. The seeds were counted on 3rd, 5th, 7th, 10th, 14th and 19th days from the beginning of the experiment and when their radicula length reached to 0.5 cm, accepted as germinated. As a result of the experiment, *Amaranthus retroflexus* was determined to be more sensitive to plant oils than *Vicia sativa*. The all plant oils (except *Ricinus communis* oil) inhibited germination of *Amaranthus retroflexus* at different ratios. Most effective plant oil was found *Syzygium aromaticum* against to redroot pigweed and *M. piperita, I. verum, F. vulgare* and *O. basilicum* was followed respectively. *S. aromaticum* oil reduced germination of *Amaranthus retroflexus* by 7%, 99% and 100% at the rate of 5µℓ, 10µℓ and 15µℓ, respectively. One of the most effective species was found *Mentha piperita* to redroot pigweed. The oil of peppermint reduced germination by 56%, 64% and 96% at the rate of 5µℓ, 10µℓ and 15µℓ, respectively. *Vicia sativa* was affected by just clove and peppermint oils. Reduction of germination by clove oil at the rate of 5µℓ, 10µℓ and 15µℓ was 96%, 96% and 100% respectively. Peppermint oil caused reduction of germination by 0%, 8% and 56% at the same ratio respectively. Efficacy ratio of the other species on germination of common vetch remained between 0% - 8% level at the highest dose. In conclusion, *oil of Syzygium aromaticum* was found the most effective plant oil among the tested plants for both weed species and it is promising that can be used in practice. Therefore, field experiments should be done.

16th EWRS Symposium 2013, Samsun