T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TiO2 ESASLI Gd, Eu, Zn ve Ag KATKILI SİLAN BAZLI NANOLİF KAPLAMALI FOTOVOLTAİK(FV) PANEL YÜZEYLERİN ENERJİ VERİMLİLİĞİNE OLAN ETKİSİNİN İNCELENMESİ ve KARAKTERİZASYONU

Ozan CEYLAN

Danışman Prof. Dr. Nalan ÇİÇEK BEZİR

DOKTORA TEZİ FİZİK ANABİLİM DALI ISPARTA- 2023 © 2023 [Ozan CEYLAN]

İÇİNDEKİLER

Sa	yfa
İÇİNDEKİLER	i
ÖZET	iv
ABSTRACT	vi
TEŞEKKUR	viii
ŞEKILLER DIZINI	ix
ÇIZELGELER DIZINI	.xii
SIMGELER VE KISALTMALAR DIZINI	xiii
1. GIRIŞ	1
2. KAYNAK OZETLERI	5
3. TEORIK BILGILER	.10
3.1. Güneş Enerjisi	.10
3.1.1. Dünya yüzeyine ulaşan güneş enerjisi	.11
3.2. Güneş Hücresi Yapısı	.13
3.2.1. Yalıtkan ve yarı iletken maddelerde enerji bandı aralığı	.13
3.2.2. III, IV ve V' inci grup elementleri ve özellikleri	.14
3.2.3. P-tipi yarıiletkenler	.15
3.2.3.1. P-tipi yarıiletkenlerde enerji bant yapısı	.16
3.2.4. N-tipi yarıiletkenler	.17
3.2.4.1. N-tipi yarıiletkenlerde enerji bant yapısı	.18
3.2.5. P-N Birleşimi	.18
3.3. FV Panelin Verimini Etkileyen Yapısal Faktörler	.19
3.4. Üretilen FV Panel Camında Soğurma Teorisi	.21
3.5. FV Panelin Teknik Parametreleri	.22
3.5.1. Kısa devre akımı	.22
3.5.2. Açık devre gerilimi	.23
3.5.3. Güç dönüşüm verimi	
3.5.4. Dolum faktörü	.23
3.5.5. Fotovoltaik panelin akım-gerilim karakteristiği	
3.6. FV Panellerin Bağlantı Yapısı ve Mekanik Katmanları	.25
3.7. Fotovoltaik Panellerin Verimini Etkileyen Çevresel ve Fiziksel Unsurlar.	
3.7.1. Güneş ışınımının yansıması	
3.7.2. FV panellere ortam sıcaklığının etkisi	.26
3.7.3. FV panel camlarının yüzey kirliliği	.27
3.8. Elektro-Eğirme Yöntemi ile Nanolif Üretimi	.28
3.9. Sol-Jel Yöntemi	.29
3.10. Antibakteriyel Testler	.29
3.10.1. Diffüzyon Yöntemi	.30
3.10.2. Dilüsvon Yöntemi	.30
3.11. Temas Acısı Ölcüm Testleri	.31
4. MATERYAL VE METOD	.32
4.1. Calısmada Kullanılan Malzemeler	.32
3.1.1. Kimvasal malzemeler	.32
4.1.2. Cam malzemeler	.32
4.2. Calısmada Kullanılan Cözeltiler	.33
4.2.1. A grubu cözeltiler	.33
4.2.2. B grubu cözeltiler	.35
4.2.3. C grubu cözeltiler	.37

4.2.4. D grubu çözeltiler	38
4.2.5. E grubu çözeltiler	40
4.3. Numune Camlarının Temizliği	41
4.4. Elektro-Eğirme Yöntemi ile Yüzey Üzerinde Nanolif Üretimi	42
4.5. Sol-Jel Yöntemi ile Kaplama İşlemi	42
4.6. Kaplanan Yüzeylerin Isıl İşlem Prosesi	42
4.7. FV Panel Düzeneğinin Kurulması	43
4.7.1. Çalışmada kullanılan polikristal FV paneller	43
4.7.2. FV düzeneğin elektronik sistem panosu	43
4.7.3. Veri kayıt cihazı	44
4.8. Numunelerin Karakterizasyonu	44
4.8.1. SEM/EDS analizi	44
4.8.2. UV-VIS Spektrofotometre ile optiksel özelliklerin incelenmesi	44
4.8.3. Mikrodilüsyon yöntemi ile antibakteriyel aktivitenin tayini	44
4.8.4. FT-IR spektroskopisi analizi	45
4.8.5. Temas acısı ölcümü	46
4.9. FV Panel Verimliliği	46
5. ARASTIRMA BULGULARI VE TARTISMA	47
5.1. Elektro-Eğirme Yöntemi ile Numune Camlarına Yapılan Silan Bazlı Na	nolif
Kaplamaların Karakterizasyon Sonucları	47
5.1.1. Kaplanan numune cam yüzevlerinin SEM-EDS sonucları	47
5.1.1.1 A grubu numunelerin SEM-EDS sonuclari	48
5.1.1.2. B grubu numunelerin SEM-EDS sonuclari	
5.1.1.3 C grubu numunelerin SEM-EDS sonuçları	56
5 1 1 4 D grubu numunelerin SEM-EDS sonuçları	60
5.1.1.5 E grubu numunelerin SEM-EDS sonuclari	64
5.1.2. Hazırlanan cözeltilerin antibakteriyel aktivite test bulguları	
5.1.3. Kaplanan numune cam vüzevlerinin temas acısı ölcüm sonucları	70
5.1.4. Hazırlanan karısımların FT-IR spektroskopisi cihazı ile elde edilen	
analiz sonuclari	72
5.1.5. UV-VIS spektrofotometre cihazi ile numunelerin optiksel özellikle	ri.74
5.1.5.1. A grubu numunelerin sonucları	74
5 1 5 2 B grubu numunelerin sonucları	76
5.1.5.3. C grubu numunelerin sonucları	78
5 1 5 4 D grubu numunelerin sonuçları	80
5 1 5 5 E orubu numunelerin sonucları	82
5 1 5 6 Nanolif kanlı çamların soğurma özellikleri	84
5.2. Elektro-Eğirme ve Sol-Iel Yöntemi ile Kaplanan ve Kaplanmayan	
Polikristal FV Panellerin Enerii Verimlilik Oranları	88
5.2.1. Calısmada kullanılan ticari FV papelin teknik parametre ölcümleri	88
5.2.2.7. Şarışlında karamınan treari verimli terimi paramene örşamınır 5.2.2. A grubu FV panel grubunun enerii verimliliğinin hesanlanması	
asamaları	91
5.2.3. B grubu FV panel grubunun enerii verimliliğinin hesaplanması	
asamaları	93
524 C grubu FV panel grubunun enerii verimliliğinin hesanlanması	
asamalari	
5.2.5. D grubu FV panel grubunun enerii verimliliğinin hesanlanması	
asamalari	
5.2.6. E grubu FV panel grubunun enerii verimliliğinin hesanlanması	
aşamaları	98
,	

5.2.7. FV panel verilerinin normallik testi	100
6. SONUÇ VE ÖNERİLER	
KAYNAKLAR	
ÖZGEÇMİŞ	

ÖZET

Doktora Tezi

TiO2 ESASLI Gd, Eu, Zn ve Ag KATKILI SİLAN BAZLI NANOLİF KAPLAMALI FOTOVOLTAİK(FV) PANEL YÜZEYLERİN ENERJİ VERİMLİLİĞİNE OLAN ETKİSİNİN İNCELENMESİ ve KARAKTERİZASYONU

Ozan CEYLAN

Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı

Danışman: Prof. Dr. Nalan ÇİÇEK BEZİR

Günümüzde yapılan araştırma ve geliştirme çalışmaları, insanların alternatif olarak çevre dostu ve doğada var olan yenilenebilir enerji kaynaklarına yöneliminin her geçen gün arttığını belirtmektedirler. Yenilenebilir enerji kaynaklarından olan güneş enerjisi en çok tercih edilen kaynaklardan bir tanesidir. Güneşten gelen ışınımın fotovoltaik (FV) hücrelere ulaşan miktarının arttırılması için son zamanlarda birçok araştırma ve geliştirme çalışması yapılmaktadır. Yapılan çalışmaların amacı güneş enerjisini elektrik enerjisine dönüştüren FV panellerden daha verimli güç çıkışı elde edebilmektir.

Bu çalışmada yüzeye ulaşan güneş ışınımının elektrokimyasal enerjiye dönüşümünü arttırabilmek için fotokatalitik, yansıma önleyici, kendi kendini temizleyen yüzeyler elde edilebilmesi amaçlanmıştır. Bu amaç doğrultusunda, titanya esaslı 15 farklı çözelti hazırlanarak nanolif kaplamalar elektro-eğirme yöntemiyle cam yüzeylere kaplanmıştır. Tüm kaplamaların enerji verimliliğine olan etkisi araştırılmıştır. Ayrıca taramalı elektron mikroskobu (SEM), enerji dağılımlı X-ışını spektroskopisi (EDS), yüzey temas açısı ölçümü, Fourier dönüşümlü infrared spektroskopisi (FT-IR), geçirgenlik, yansıma ve soğurma spektrum, antibakteriyel aktivite testi analizleri yapılarak numunelerin karakterizasyon sonuçları karşılaştırılmalı olarak incelenerek çalışma bu analizler ile desteklenmiştir.

Elde edilen tüm veriler doğrultusunda, yüzeyler üzerinde nanolif oluşumlarının meydana geldiği elementel dağılım haritasında çözeltilerin kaplama yüzeyinde varlığının doğrulandığı, kaplanan numune cam yüzeylerin çoğunluğunun su damlacığına karşı yüzey üzerinde hidrofilik bir etki bıraktığını, FT-IR spektrumunda çözeltide bulunan kimyasalların spektrumda bulunan varlığının doğrulandığı ve *E.coli* bakterisine karşı antibakteriyel aktivite gösterdiği tespit edilmiştir. Ayrıca kaplama yapılmayan FV panel referans alınarak belirlenen ölçüm periyotlarında elde edilen verilere göre kaplamaların enerji verimliliğine etkileri ile ilgili, B₃ ve C₂ FV panelleri dışında diğer tüm FV panellerde hiç kaplanmayan FV panellere göre daha verimli bir güç çıkışı elde edildiği görülmüştür. Bu sonucu nanolif kaplamalı eşdeğer cam numunelerin geçirgenlik ve yansıma spektrum

analizlerinin de desteklediği tespit edilmiştir. Sonuç olarak özetle, yüzeyleri nanolif kaplı FV panellerin, yüzeyleri hiç kaplanmayan FV panele göre FV hücreye ulaştırdığı güneş ışınım miktarını arttırdığı sonucuna varılmıştır.

Anahtar Kelimeler: Yenilenebilir enerji, fotovoltaik, fotokatalitik, nanolif, elektro-eğirme, karakterizasyon, TiO₂.

2023, 116 sayfa

ABSTRACT

M.Sc. Thesis

INVESTIGATION and CHARACTERIZATION of the EFFECT of TiO₂-BASED Gd, Eu, Zn and Ag ADDITIVES on the ENERGY EFFICIENCY of SILANE-BASED NANOFIBER COATED PHOTOVOLTAIC (PV) PANEL SURFACES

Ozan CEYLAN

Süleyman Demirel University Graduate School of Natural and Applied Sciences Department of Physics

Supervisor: Prof. Dr. Nalan ÇİÇEK BEZİR

Nowadays, research and development studies indicate that people are increasingly turning to renewable energy sources that are environmentally friendly and exist in nature as an alternative. Among renewable energy sources, solar energy is one of the most preferred sources. Many research and development efforts have recently been carried out to increase the amount of solar radiation from the sun to photovoltaic (PV) cells. The aim of these studies is to achieve more efficient power output from PV panels that convert solar energy into electrical energy.

In this study, it is aimed to obtain photocatalytic, anti-reflective, self-cleaning surfaces in order to increase the conversion of solar radiation reaching the surface into electrochemical energy. For this purpose, 15 different titania-based solutions were prepared and nanofiber coatings were coated on glass surfaces by electrospinning method. The effect of all coatings on energy efficiency was investigated. In addition, scanning electron microscopy (SEM)-energy dispersive, X-ray spectroscopy (EDS), surface contact angle measurement, Fourier transform infrared spectroscopy (FT-IR), transmittance, reflectance and absorption spectra, antibacterial activity test analysis were carried out and the characterization results of the samples were comparatively examined and the study was supported by these analyzes.

According to the data obtained, it was observed that nanofiber formations occurred on the surfaces, the presence of the solutions on the coating surface was confirmed in the element distribution map, the coated sample glass surfaces the majority of them left a hydrophilic effect on the surface against water droplets, the FT-IR spectrum confirmed the presence of the chemicals in the solution in the spectrum and showed antibacterial activity against *E.coli* bacteria. In addition, regarding the effects of coatings on energy efficiency in the measurement periods determined with reference to the uncoated PV panel, it was observed that a more efficient power output was obtained in all PV panels except B3 and C2 PV panels compared to the uncoated PV panels. This result was also supported by the transmittance and reflectance spectrum analysis of nanofiber coated equivalent glass samples. As a result, it is concluded that PV panels with nanofiber-coated surfaces increase the amount of solar radiation reaching the PV cell compared to the PV panel without coating on the surface.

Keywords: Renewable energy, photovoltaic, photocatalytic, nanofiber, electrospinning, characterization, TiO_2 .

2023, 116 pages

TEŞEKKÜR

Bu araştırma için beni yönlendiren, karşılaştığım zorlukları aşmamda yardımcı olan değerli danışman hocam Prof. Dr. Nalan ÇİÇEK BEZİR'e, çalışmamın her anında benim yanımda olan laboratuvarlarında çalışma imkânı sunan değerli hocam Prof. Dr. Atilla EVCİN'e, bilgi ve tecrübesi ile tezimin literatür ve teorik kısımlarında desteklerini esirgemeyen değerli hocalarım Prof. Dr. Refik KAYALI ve Prof. Dr. Esengül KIR, Prof. Dr. İskender AKKURT, Doç. Dr. Kadir GÜNOĞLU, antibakteriyel analizlerde desteğini esirgemeyen değerli hocam Dr. Öğr. Üyesi Demet HANÇER AYDEMİR'e teşekkürlerimi sunarım.

Doktoraya başlamama öncü olan, gölgelerini her zaman üzerimde hissettiğim, hakkını bir ömür ödeyemeyeceğim aileme, eşime ve canım oğullarım Aras ve Eymen'e sonsuz sevgi ve saygılarımı sunarım.

FDK-2020-7991 No`lu Proje ile tezimi maddi olarak destekleyen Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Yönetim Birimi Başkanlığı'na teşekkür ederim.

Ozan CEYLAN ISPARTA, 2023

ŞEKİLLER DİZİNİ

S	bayfa
Şekil 3.1. Güneş enerjisi tayfı	10
Şekil 3.2. Yeryüzüne ulaşan ve atmosfer dışında bulunan güneş enerjisi tayfı	11
Şekil 3.3. Spektral ışınımın görünür bölgeyi kapsayan dalga boyuna göre	
spektrumu	12
Sekil 3.4. Ülkemizin günes enerjisi potansiveli atlası	13
Sekil 3.5. Yalıtkan, varı iletken ve iletken maddelerde enerii bandı yapışı	14
Sekil 3.6. III. IV ve V' inci gruplarda bulunan elektronların s ve	
n vörüngelerindeki konfigürasvonları	15
Sekil 3.7 P-tini variletken malzemede elektronların sematik bağ vanışı	16
Sekil 3.8. D tini bir variletkende enerii bant vanışı	10
Solii 2.0. N tini yamilathan malaamada alaktaanlarin samatik hax yangu	17
Şekil 3.9. N-upi yarılletken maizemede elektronların şematik bağ yapısı	1/
Şekil 3.10. N tipi yariiletkende enerji bant yapıları	18
Şekil 3.11. P-N birleşiminde deplasyon bölgesindeki yük dağılımı,	
minör – ve + yüklerin dağılımı, oluşan elektrik alanı ve	
oluşan potansiyel	19
Şekil 3.12. Bir FV panelin şematik görünümü	20
Şekil 3.13. FV cam yüzey üzerine düşen güneş ışınımının hareketleri	21
Şekil 3.14. FV panelin I-V karakteristik eğrisi	24
Şekil 3.15. FV sistemlerin bağlantı modelleri	25
Sekil 3.16. FV paneli dıstan ice doğru olusturan tüm katmanlar	25
Sekil 3.17. Elektro-eğirme cihazının sematik olarak gösterimi	28
Sekil 3 18. Sol-Iel vöntemi basamakları sematik gösterimi	29
Sekil 3 19 Yüzev temas acısı ölcüm cihazının sematik gösterimi	31
Sekil 4.1. At cözeltisinin hazırlık asamaları	33
Sekil 4.2. Az cözeltisinin hazırlık aşamaları	
Solil 4.2. Az oözoltisinin hazırlık aşamaları	
Seliil 4.4. D. aäzeltisinin hazuluk asamalar	55
Sekii 4.4. B_1 çozenusinin nazirink aşamatarı	33
Şekil 4.5. B ₂ çozeltisinin hazırlık aşamaları	36
Şekil 4.6. B ₃ çözeltisinin hazırlık aşamaları	36
Şekil 4.7. C ₁ çözeltisinin hazırlık aşamaları	37
Şekil 4.8. C ₂ çözeltisinin hazırlık aşamaları	37
Şekil 4.9. C ₃ çözeltisinin hazırlık aşamaları	38
Şekil 4.10. D ₁ çözeltisinin hazırlık aşamaları	38
Şekil 4.11. D ₂ çözeltisinin hazırlık aşamaları	39
Şekil 4.12. D ₃ çözeltisinin hazırlık aşamaları	39
Sekil 4.13. E ₁ cözeltisinin hazırlık asamaları	40
Sekil 4.14. E ₂ cözeltisinin hazırlık asamaları	40
Sekil 4 15 E_3 cözeltisinin hazırlık asamaları	41
Sekil 4 16 Cam Numune Vikama Prosesi	41
Sekil 4.17 EV papel düzeneği	/13
Solvil 5.1. A grubu numunologin SEM görüntülori ol A. b) A. c) A.	+J /Q
Sekii 5.1. A glubu humunelemii SEWi goluntulen a) A1, b) A2, c) A3	40
Şekil 5.2. A ₁ numunesinin orlalama nanolil çap degerleri	49
Şekil 5.5. A2 numunesinin ortalama nanolit çap degerleri	49
Şekil 5.4. A ₃ numunesinin ortalama nanolif çap değerleri	49
Şekil 5.5. A ₁ numunesinin EDS sonuçları	50
Şekil 5.6. A2 numunesinin EDS sonuçları	51
Şekil 5.7. A3 numunesinin EDS sonuçları	51

Şekil 5.8. B Grubu Numunelerin SEM Görüntüleri a) B ₁ , b) B ₂ , c) B ₃	52
Şekil 5.9. B ₁ numunesinin ortalama nanolif çap değerleri	53
Şekil 5.10. B ₂ numunesinin ortalama nanolif çap değerleri	53
Şekil 5.11. B ₃ numunesinin ortalama nanolif çap değerleri	53
Şekil 5.12. B ₁ numunesinin EDS sonuçları	54
Şekil 5.13. B ₂ numunesinin EDS sonuçları	55
Şekil 5.14. B ₃ numunesinin EDS sonuçları	55
Şekil 5.15. C grubu numunelerin SEM görüntüleri a) C ₁ , b) C ₂ , c) C ₃	56
Şekil 5.16. C1 numunesinin ortalama nanolif çap değerleri	57
Şekil 5.17. C ₂ numunesinin ortalama nanolif çap değerleri	57
Şekil 5.18. C3 numunesinin ortalama nanolif çap değerleri	57
Şekil 5.19. C ₁ numunesinin EDS sonuçları	58
Şekil 5.20. C ₂ numunesinin EDS sonuçları	59
Şekil 5.21. C ₃ numunesinin EDS sonuçları	59
Şekil 5.22. D Grubu Numunelerin SEM Görüntüleri a) D1, b) D2, c) D3	60
Şekil 5.23. D ₁ numunesinin ortalama nanolif çap değerleri	61
Şekil 5.24. D ₂ numunesinin ortalama nanolif çap değerleri	61
Şekil 5.25. D ₃ numunesinin ortalama nanolif çap değerleri	61
Şekil 5.26. D1 numunesinin EDS sonuçları	62
Şekil 5.27. D ₂ numunesinin EDS sonuçları	63
Şekil 5.28. D3 numunesinin EDS sonuçları	63
Şekil 5.29. E grubu numunelerin SEM görüntüleri a) E ₁ , b) E ₂ , c) E ₃	64
Şekil 5.30. E ₁ numunesinin ortalama nanolif çap değerleri	65
Şekil 5.31. E ₂ numunesinin ortalama nanolif çap değerleri	65
Şekil 5.32. E ₃ numunesinin ortalama nanolif çap değerleri	65
Şekil 5.33. E1 numunesinin EDS sonuçları	66
Şekil 5.34. E ₂ numunesinin EDS sonuçları	67
Şekil 5.35. E ₃ numunesinin EDS sonuçları	67
Şekil 5.36. Çözeltilerin E. coli ve S.aureus bakterilerine karşı antibakteriyel	
seyreltme testi sonuçları	68
Şekil 5.37. A grubu temas açısı ölçüm sonuçları a-) A1, b-) A2, c-) A3	70
Şekil 5.38. B grubu temas açısı ölçümü sonuçları a-) B1, b-) B2, c-) B3	70
Şekil 5.39. C grubu temas açısı ölçümü sonuçları a-) C1, b-) C2, c-) C3	71
Şekil 5.40. D grubu temas açısı ölçümü sonuçları a-) D ₁ , b-) D ₂ , c-) D ₃	71
Şekil 5.41. E grubu temas açısı ölçümü sonuçları a-) E1, b-) E2, c-) E3	72
Şekil 5.42. A1 çözeltisinin FT-IR spektrum sonucu	73
Şekil 5.43. A grubu numunelerin geçirgenlik spektrumları	74
Şekil 5.44. A grubu numunelerin soğurma spektrumları	75
Şekil 5.45. A grubu numunelerin yansıma spektrumları	75
Şekil 5.46. B grubu numunelerin geçirgenlik spektrumları	76
Şekil 5.47. B grubu numunelerin soğurma spektrumları	77
Şekil 5.48. B grubu numunelerin yansıma spektrumları	77
Şekil 5.49. C grubu numunelerin geçirgenlik spektrumları	78
Şekil 5.50. C grubu numunelerin soğurma spektrumları	79
Şekil 5.51. C grubu numunelerin yansıma spektrumları	79
Şekil 5.52. D grubu numunelerin geçirgenlik spektrumları	80
Şekil 5.53. D grubu numunelerin soğurma spektrumları	81
Şekil 5.54. D grubu numunelerin yansıma spektrumları	81
Şekil 5.55. E grubu numunelerin geçirgenlik spektrumları	82
Şekil 5.56. E grubu numunelerin soğurma spektrumları	83

Şekil 5.57. E grubu numunelerin yansıma spektrumları	83
Şekil 5.58. Nanolif kalınlıklarının SEM görüntüleri	84
Şekil 5.59. A grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu	85
Şekil 5.60. B grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu	85
Şekil 5.61. C grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu	86
Şekil 5.62. D grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu	87
Şekil 5.63. E grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu	87
Şekil 5.64. Ölçüm sisteminin şematik gösterimi	90
Şekil 5.65. FV panelin hesaplanan I-V karakteristiği	91

ÇİZELGELER DİZİNİ

	Sayfa
Çizelge 3.1. Belirtilen dalga boyu aralıklarına gelen foton sayısı	12
Çizelge 3.2. III, IV ve V grup elementleri ve elektron konfigürasyonları	15
Çizelge 4.1. Çalışmada kullanılan kimyasallara ait teknik özellikler	32
Çizelge 4.2. Tedarik edilen cam numunelerin özellikleri	33
Çizelge 4.3. AN ₂ karışımı ile ilgili bilgiler	42
Çizelge 5.1. Çözeltilerin E. coli bakterisine karşı MİK ve MBK değerleri	69
Çizelge 5.2. Multimetre ile ölçülen Vmax, Imax, Isc ve Voc değerleri	90
Cizelge 5.3. A grubu FV panel grubu için günlük maksimum güç değerleri	92
Cizelge 5.4. A grubu FV panellerin günlük enerji verim oranları	92
Çizelge 5.5. B grubu FV panel grubu için günlük ortalama maksimum güç	
değerleri	93
Çizelge 5.6. B grubu FV panellerin günlük enerji verim oranları	94
Çizelge 5.7. C grubu FV panel grubu için günlük ortalama maksimum güç	
değerleri	95
Çizelge 5.8. C grubu FV panellerin günlük enerji verim oranları	96
Cizelge 5.9. D grubu FV panel grubu için günlük ortalama maksimum güç	
değerleri	97
Cizelge 5.10. D grubu FV panellerin günlük enerji verim oranları	98
Cizelge 5.11. E grubu FV panel grubu icin günlük ortalama maksimum güc	
değerleri	99
Cizelge 5.12. E grubu FV panellerin günlük enerji verim oranları	99
Cizelge 5.13. A_0 ve A_1 örneklemlerinin Mann Whitney U testi sonucları	100
Cizelge 5.14. A ₀ ve A ₂ örneklemlerinin Mann Whitney U testi sonucları	101
Cizelge 5.15. A ₀ ve A ₃ örneklemlerinin Mann Whitney U testi sonucları	101
Cizelge 5.16. B_0 ve B_1 örneklemlerinin Mann Whitney U testi sonucları	101
Cizelge 5.17. B ₀ ve B ₂ örneklemlerinin Mann Whitney U testi sonucları	102
Cizelge 5.18. B_0 ve B_3 örneklemlerinin Mann Whitney U testi sonucları	102
Cizelge 5.19. C_0 ve C_1 örneklemlerinin Mann Whitney U testi sonucları	102
Cizelge 5.20. C ₀ ve C ₂ örneklemlerinin Mann Whitney U testi sonucları	103
Cizelge 5.21. C ₀ ve C ₃ örneklemlerinin Mann Whitney U testi sonucları	103
Cizelge 5.22. D_0 ve D_1 örneklemlerinin Mann Whitney U testi sonucları	103
Cizelge 5.23. D_0 ve D_2 örneklemlerinin Mann Whitney U testi sonucları	104
Cizelge 5.24. D_0 ve D_3 örneklemlerinin Mann Whitney U testi sonucları	104
Cizelge 5.25. E ₀ ve E ₁ örneklemlerinin Mann Whitney U testi sonucları	104
Cizelge 5.26. E ₀ ve E_2 örneklemlerinin Mann Whitney U testi sonuçları	105
Cizelge 5.27. E_0 ve E_3 örneklemlerinin Mann Whitney U testi sonuçları	105
Cizelge 6.1. Calısmada kullanılan tüm FV panellerin enerii verim oranları	
ortalaması	107

SİMGELER VE KISALTMALAR DİZİNİ

А	FV hücrenin m ² cinsinden alanı
Ag	Gümüş
Al	Alüminyum
Al_2O_3	Alüminyum oksit
As	Arsenik
Ca	Kalsiyum
CO_2	Karbondioksit
Cu ₂ O	Bakır(I) oksit
DC	Doğru akım
DMSO	Dimetil sülfoksit
EDS	Enerji dağılımlı X-ışını spektroskopisi
Ee	Güneş ışınım değeri
Eu	Evropiyum
EVA	Etilen vinil asetat
FESEM	Alan emisyonlu taramalı elektron mikroskobu
FF	Doluluk faktörü
FT-IR	Fourier dönüşümlü infrared spektroskopisi
FV	Fotovoltaik
Gd	Gadolinyum
Ge	Germanyum
I _{max}	Maksimum Akım
I _{sc}	Kısa devre akımı
J	Jul
KWh	Kilowatt saat
MBK	Minimum bakterisidal konsantrasyon
Mg	Magnezyum
MgF_2	Magnezyum florür
MĬK	Minimum inhibisyon konsantrasyon
mm	Milimetre
mV	Milivolt
MW	Megawatt
Na	Sodyum
OD	Absorbans değerleri
PEC	Fotoelektrokimyasa
P _{max}	Maksimum güç değeri
SEM	Taramalı elektron mikroskobu
Si	Silisyum
Si_3N_4	Silisyum nitrür
SiO ₂	Silikon oksit
TiO ₂	Titanyum dioksit
V	Volt
V_{oc}	Açık devre gerilimi
WO ₃	Tungsten trioksit
Y	İtriyum
ZnO	Çinko oksit
ZrO_2	Żirkonyum oksit
η	Güç dönüşüm verimi
λ	Dalga boyu

1. GİRİŞ

Dünyada enerjiye olan talep her geçen gün giderek arttığı için bu talebi karşılayan enerji kaynakları da hızla tükenmektedir. Yapılan araştırmalar, petrol, kömür, doğal gaz gibi kaynakların 20-30 yıl sonra yetersiz kalabileceğini göstermektedir. Geleneksel yöntemler ile üretilen enerji; çevre kirliliği, karbondioksit (CO₂) salınımı gibi olumsuz faktörleri nedeniyle çevreyi ve doğayı olumsuz yönde etkilemektedir. Bu olumsuzluklar sonucunda araştırmacılar yenilikçi çalışmalar üzerinde yoğunlaşmışlardır. Yapılan araştırma ve geliştirme çalışmaları, insanların alternatif olarak çevre dostu ve doğada var olan yenilenebilir enerji kaynaklarına olan yönelimini her geçen gün arttırdığını göstermektedir.

Yenilenebilir enerji kaynakları olan rüzgâr ve güneş enerjisi ile doğrudan elektrik enerjisi elde edilebildiği için bu enerji kaynaklarının oldukça pratik ve tercih edilebilir özellikte olduğu görülmektedir. Güneş enerjisinden doğrudan elektrik enerjisi elde edebilmek için güneş ışınımından yararlanan FV paneller kullanılmaktadır. Ancak güneş ışınımı ile güneş enerjisinden elde edilen enerji veriminin düşük olması nedeniyle enerji verimliliğinin arttırılmasına yönelik akademik çalışmalar giderek yaygınlaşmaktadır.

FV panellerin enerji verimlilik oranlarını düşüren bazı etkenler bulunmaktadır. Özellikle çevresel kirlenmelerden (toz, çamur ve CO₂ salınımı) dolayı panel yüzeyi kirlenmektedir. Dolayısıyla bu çevresel faktörler enerji üretiminde kayıpları arttırarak üretilen gücü düşürmektedir. Verimliliği düşüren bu etkiler üzerine Louy vd. (2017), yaptıkları çalışmalarında 1 Megavat (MW)'lık bir FV enerji santralinin çevresel faktörlerinden dolayı kaybedilen enerjinin yaklaşık yıllık 89000 kilovat saat (kWh)'e kadar çıktığını belirtmektedir. Ayrıca oluşan kayıpların zamana ve dış ortam etkilerine bağlı olarak değişkenlik gösterebileceğini açıklamışlardır.

Günümüzde malzemelerin yüzey parametrelerinin geliştirilmesi yönünde birçok araştırma ve geliştirme çalışması yapılmaktadır. Yapılan çalışmalar genellikle, yüzeylerin fiziksel özelliklerinin geliştirilmesi, yenilenebilir enerji alanında enerji verimliliğinin ve antibakteriyel etkinin arttırılması üzerine yoğunlaşmıştır. Bu yüzden nanoteknoloji alanı tercih edilen ve üzerinde araştırma ve geliştirme çalışmaları yapılan öncü bir alan olmuştur.

Nanoteknoloji, birçok disiplini içinde bulunduran mühendislik, fizik, kimya, tıp, biyoloji alanlarında popülerliğini sürdürmektedir. Nanoteknoloji alanında nanolif üretimi için en çok tercih edilen metotlardan birisi de elektro-eğirme yöntemidir. Nanoliflerin, kaplama yapıldığı yüzey alanına hacimli bir şekilde yayılması, yüzeye mukavemeti yüksek bir şekilde tutunabilmesi için elektro-eğirme yöntemi basit ve etkin bir şekilde uygulanmaktadır.

Son dönemde, FV panellerin enerji verimliliğini arttırabilmek adına cam yüzeylerin nano malzemeler ile kaplanması tercih edilmektedir. Bu kaplama işlemi, içerisinde nano boyutta Titanyum Dioksit (TiO₂), Silikon Oksit (SiO₂) vb. kimyasal bileşimlerin bulunduğu bir katman ile yüzeye kaplanmaktadır. Kaplanan yüzeylerde; kendi kendini temizleme, kolay temizlenebilme, antibakteriyel, çizilmeye karşı dayanıklılık ve optik özelliklerin arttırılması gibi birçok farklı üstün özellikler kazandırılması amaçlanmaktadır. Bu üstün özelliklere sahip olan yüzeyler fotokatalitik yüzeyler olarak adlandırılır.

Fotokatalitik etki üzerine yapılan araştırma ve geliştirme çalışmalarında kullanılan yarıiletkenlerden en aktif katalizörün TiO_2 olduğu belirtilmiştir. TiO_2 temel alınarak birçok yarı iletkenin verimlilikleri incelenmiş olup önemli katalizör etkilerinin olduğu tespit edilmiştir (Dener, 2022; Sayılkan, 2007).

İncelenen bu yarıiletkenler arasında etkinliğinin TiO_2' ye en yakın olanın Çinko oksit (ZnO) olduğu sonucuna varılmıştır. Bu iki yarıiletkenin bant enerji aralıklarının benzer, ekonomik ve kolay işlenebiliyor olmaları nedeniyle pek çok alan için fotokatalizör olarak tercih edilmelerine sebep olmuştur.

Nano kaplamalarda nanomalzemenin yüzeye daha iyi tutunabilmesi için, inorganikorganik malzemelerin birbirleri arasında mekanik mukavemeti, yapışmayı ve yüzey modifikasyonunu arttıran bir kimyasal malzeme olan silan, birçok araştırma ve geliştirme çalışmasında etkili bir malzeme olarak kullanılmaktadır (Reddy vd., 2014; Dai vd., 2016). Bu çalışmada, hazırlanan 15 adet farklı çözelti ile nanolif kaplı FV panel yüzeylerinin enerji verimliliğine olan etkisi ve hazırlanan 15 adet farklı çözelti ile kaplanan eşdeğer FV panel camlarının karakterizasyonu yapılmıştır.

İlk olarak hazırlanan 15 farklı homojen çözelti, elektro-eğirme düzeneğinde bulunan şırınga sistemine yerleştirilerek kaplama yapılacak yüzeyler üzerinde ayrı ayrı nanolifler elde edilmiştir. Tüm kaplamaların yapılması için eşdeğer "Sandy 3.2 mm" FV panel camı altlık olarak kullanılmıştır. Çözeltilerin içerisinde bulunan kimyasal malzemelerin yüzeye daha hızlı nüfuz etmesi ve yüksek gözeneklilik sağlaması için nanolif kaplamalar tercih edilmiştir. Ardından, tüm kaplamaların karakterizasyon analizleri yapılarak karşılaştırmalı olarak sonuçlar değerlendirilmiştir. Karakterizasyon asamalarında ilk olarak, kaplanan cam numunelerin SEM-EDS analizleri yapılarak yüzeyin morfolojik yapısı incelenmiş olup ardından yüzey üzerinde belirli bir alanda bulunan çözelti içeriğinin yüzeydeki varlığını doğrulamak adına elementlerin dağılım haritaları çıkarılmıştır. Nanoliflerin optik özellikleri olan geçirgenlik, yansıma ve soğurma spektrumları UV-VIS spektrofotometre cihazı ile incelenmiştir.

FT-IR ile numunelerin, saçılan kızılötesi ışınımın molekül kimyasal bağları tarafından soğurulması sonucunda spektrumu incelenmiştir. Ayrıca nanolif kaplamalı yüzeylerin *E.coli* bakterisine karşı antibakteriyel etkilerini inceleyebilmek için broth mikrodilüsyon yöntemi kantitatif duyarlılık testlerinden olan minimum inhibisyon konsantrasyon (MİK) ve minimum bakterisidal konsantrasyon (MBK) deneyleri yapılmıştır. Son olarak, kaplanan cam numunelerin her birinin yüzeyinde sıvı damlacığının davranışını tespit edebilmek için pendant damla yöntemi ile temas açısı ölçümleri alınmıştır.

Karakterizasyon analizlerinden sonra, kaplanan polikristal eşdeğer FV paneller A, B, C, D ve E olarak gruplandırılmıştır. Ardından her bir FV panel grubun, güneye bakan eğimli bir mekanik düzeneğe, çalışmada belirtilen tarih aralıklarında montajı yapılmıştır. Mekanik montajı yapılan her bir grubun Arduino tabanlı bir veri ölçüm ve kayıt sistemine elektrik tesisat bağlantısı da yapılarak ölçüme hazır hale getirilmiştir. Arduino tabanlı bir veri ölçüm ve kayıt sistemi ile FV panel gruplarının gerçek ortam koşullarında ayrı ayrı elektriksel teknik parametre ölçümleri ölçüm periyotları içerisinde, her saat başı kaydedilmiştir. Kaydedilen bu veriler sistemden alınarak, belirtilen tarih aralıkları içerisindeki FV panellerin günlük ortalama enerji verim oranları hesaplanmıştır. Hesaplanan bu veriler ışığında, hiç kaplanmayan ve kaplanan FV panellerin enerji verimlilik oranlarına göre, kaplamaların enerji verimliliğine olan etkisi karşılaştırmalı olarak incelenmiştir. Sonuç olarak literatürde bulunan çalışmalarda da görüldüğü gibi, TiO₂ esaslı çözeltilere Eu, Gd, Ag ve Zn katkılanması ile fotokatalitik etki artmaktadır.

2. KAYNAK ÖZETLERİ

Dobrzański vd. (2014), yaptıkları çalışmalarında atomik katman biriktirme yöntemi ile yüzeyde biriktirilen Al₂O₃'ün yansıma önleyici kaplamaların kullanılmasını önermişlerdir. Kaplanmış güneş pillerinin yapısındaki Al₂O₃ ince film sayesinde hem yansıma önleyiciliği hem de pasivasyon tabakası işlemini kolaylaştırabileceğini görmüşlerdir. Bu araştırma için 50x50 mm monokristal silisyum güneş pillerini kullanmışlardır. Sonuçlar ve analizlerinin tamamlanmasıyla, atomik katman biriktirme yöntemi tarafından biriktirilen Al₂O₃ yansıma önleyici kaplamanın, silikon güneş pilinin üzerinde optoelektronik özelliklerinde önemli bir etkiye sahip olduğu sonucuna varmışlardır. Son olarak yaklaşık 80 nm Al₂O₃ kaplaması için en iyi sonucu, yansımayı %1'in altına düşüren 400 ila 800 nm dalga boyu aralığında elde edildiğini tespit etmişlerdir. Yansıma önleyici kaplama ve kaplamasız yüzeyler arasındaki güneş pilleri enerji verimliliğindeki farkın %5.28 olduğunu belirtmişlerdir.

Noh ve Myong (2014), yaptıkları çalışmalarında 1,43 m² ince-film silisyum FV modül dış cam yüzeyleri için uygun maliyetli, düşük sıcaklıkta yansıma önleyici bir tungsten trioksit (WO₃)-TiO₂ nanoparçacık fotokatalist kaplama önermişlerdir. Kaplanmış nano filmlerin, geniş bant yansıma önleyici etkiye sahip olduğunu ve bununda başlangıç performanslarının artmasına neden olabileceğini belirtmişlerdir. Özellikle, foto kaynaklı süper hidrofilikliğe bağlı kendi kendini temizleme etkisi, dış mekâna maruz kalan bozulmanın önemli ölçüde azalmasına yol açabileceğini söylemişlerdir. Uzun süreli bir dış ortam saha testi ile fotovoltaik modül için %4.3'lük sert enerji çıkışı kazancı olduğunu tespit etmişlerdir.

Soklič vd. (2015), yaptıkları çalışmalarında bir cam substrat üzerinde kendi kendini temizleyen TiO₂-SiO₂ ince filmin yapısal ve fotokatalitik özelliklerini incelemişlerdir. Bu şekilde elde edilen filmin, fotovoltaik bir panelin verimine etkisini araştırmışlardır. Yapılan UNG10-7c adlı kaplamanın homojen ve çatlaksız ince film oluşmasına neden olduğu ve görünür ışık için yüksek şeffaflığa sahip olduğunu söylemişlerdir. UNG10-7c'nin kendi kendini temizleme etkinliği, aynı deneysel koşullar altında ticari kendi kendini temizleyen Pilkington ve St. Gobain camlarının aktivitesinden çok daha iyi olduğunu belirtmişlerdir. Kısa süreli verim

analizinde modüllerin verimliliğindeki farklılıkların belirgin olmadığını, son olarak daldırma kaplama tekniği ile hazırlanan TiO₂-SiO₂ ince filmlerin yansıma önleyici özelliklerinin doğrulandığını açıklamışlardır.

Arabatzis vd. (2018), yaptıkları çalışmalarında kendi kendini temizleyen, fotokatalitik, yansıma önleyici bir cam kaplamanın FV panellerin verimliliği üzerindeki etkisini araştırmışlardır. Kaplamanın optik ve fotokatalitik özelliklerini sırasıyla UV-VIS spektroskopisi ve organik kirletici Metilen Mavisinin bozunması ile incelemişler ve kaplanmamış cama kıyasla kaplamanın görünür ışık bölgesinde ışık geçirgenliğinin arttığını ve daha iyi kendi kendini temizleme özelliği gösterdiğini bulmuşlardır. Kaplanmış ve kaplanmamış FV panellerin dış mekân performansını birkaç ay boyunca izlediklerini ve kaplama nedeniyle üretilen ekstra enerjinin ölçülebilmesi için farklı iklim koşullarında (Yunanistan ve Çin) ölçümleri yapmışlardır. Her iki durumda da tüm süre boyunca ortalama %5-%6'lık bir verim kazancı oluştuğunu elde etmişlerdir.

Piedra vd. (2018), yaptıkları çalışmalarında FV panellerin üzerinde biriken tozların kütlesine bağlı olarak FV panelin ürettiği çıkış gücünde %50'ye yakın düşüş meydana gelmekte olduğunu ve toz kütlesi ile çıkış gücünün lineer bir fonksiyon şeklinde ilişkilendirildiği belirtmektedirler. Ayrıca çıkış gücünün düşmesini, tozun ışık absorbasyon kabiliyetini de etkilediğini, kimi tozlar ışığı geçirdiğinden dolayı FV panelin gücünü etkilemediğini, kimisi ise ışığın panel yüzeyine geçmesini engellediğinden dolayı verimini düşürdüğünü belirtmişlerdir.

Lay-Ekuakille vd. (2018), yaptıkları çalışmalarında Piedra vd. (2018)'nin yaptıkları çalışmayı doğrular nitelikte bir sonuç bulmuşlardır. 6 yıl boyunca tozlanmaya maruz kalan ve başlangıçta 75 W çıkış gücü olan bir sistemden 20 W çıkış gücü elde edildiğini belirtmişlerdir.

Rahal vd. (2018), yaptıkları çalışmalarında Bakır(I) oksit (Cu₂O) ince filmler hazırlayarak elektrodepozisyon tekniği ile sodyum tiyosülfat ve bakır asetat içeren bir çözeltiyi indium kalay oksit kaplı FV panel cam yüzeylere kapladıklarını belirtmişlerdir. Bakır asetat içeren elektrolit banyosunun elektrokimyasal davranışını incelemek için siklik voltametri ve kronoamperometri kullanmışlardır. Ayrıca sodyum tiyosülfatın elektrokimyasal çökelme üzerindeki etkisi ve Cu₂O 'nun yapısını ve morfolojisini araştırmışlardır. Son olarak filmlerin, FT-IR, SEM, optik, fotoelektrokimyasal (PEC) ve elektriksel ölçümlerini karakterize etmişlerdir.

Appasamy vd. (2020), yaptıkları çalışmalarında yeni bir nitrojen katkılı TiO₂ / tek cidarlı karbon nanotüplerin, fotokatalist nanokompozitinin FV panel yüzeyinde kendi kendini temizleyen kaplama uygulamasının potansiyelini araştırıp değerlendirmişlerdir. N-katkılı TiO₂ fotokatalitik tozun, sol-jel sentez yöntemi ile hazırlandığını ve daha sonra TiO₂ ve tek cidarlı karbon nanotüplerin bileşimleri değiştirilerek tek cidarlı karbon nanotüpler ile emdirildiği belirtilmiştir. Nanokompozitin, XRD, alan emisyonlu taramalı elektron mikroskobu (FESEM) ve FT-IR kullanarak karakterize etmişlerdir. Ayrıca UV-VIS spektroskopisi ile görünür ışıkta metilen mavisi bozulması görüldüğünü açıklamışlardır. Bu yeni kaplama ile, %72.43 bozulma oranına ve 94.3 \pm 2 °'ye kadar ıslanabilirliğe sahip gelişmiş bir fotokatalitik aktivite gösterdiğini tespit etmişlerdir.

Çelen (2020), yaptığı tez çalışmasında, TiO₂, SiO₂, B₂O₃ ve TiO₂+SiO₂+B₂O₃ elementleriyle kaplanan panellerin, kaplanmayan panele göre güç artışındaki analizini incelemiştir. Panel yüzeylerine yapılan kaplamalardan; TiO₂, SiO₂ elementleriyle foto katalitik ve yansıma önleyici etki sağlandığını, B₂O₃ elementi ile de anti bakteriyel yüzey elde edildiğini söylemiştir. FV panellerin dış ortamda konumlanmış ve üretilen ekstra enerjinin ölçülmesi için fotovoltaik sistem düzeneği alınan veriler ile en verimli kaplama tayininin TiO₂+SiO₂+B₂O₃ kaplamalı FV panelin olduğunu belirtmiştir.

Sarkın vd. (2020), yaptıkları çalışmalarında SiO₂, magnezyum florür (MgF₂), TiO₂, silisyum nitrür (Si₃N₄) ve zirkonyum oksit (ZrO₂) malzemelerinin yansıma önleyici kaplamalarda yaygın olarak kullanıldığını belirtmişlerdir. Kaplamaların yüzeye uygulanmasında en çok tercih edilen yöntemlerin, sol-jel + spin kaplama veya + daldırma kaplama, püskürtme, DC veya RF magnetron ve elektroeğirme yöntemleri olduğunu belirtmişlerdir. Kendi kendini temizleyen yüzey kaplamaları için, alüminyum oksit (Al₂O₃), TiO₂, ve Si₃N₄ malzemelerinin, çift ve üç katmanlı yüzey kaplamaları açısından başarılı sonuçlar verdiğini, kaplamanın yüzeye yapışmasını ve dayanıklılığını arttırdığını belirtmişlerdir. Ayrıca çok katmanlı yansıma önleyici

kaplamaların, yansımayı azaltıldığını ve ışık geçirgenliği arttırdığını da tespit etmişlerdir.

Tao ve Zang (2020), yaptıkları çalışmalarında hazırladıkları SiO₂-TiO₂ temelli çözeltiyi içeren ince filmlerin, yüksek şeffaflık, yüksek fotokatalitik aktivite, mükemmel mekanik sağlamlık ve süperhidrofilik (buğu önleyici) özelliklerine sahip olduğunu tespit etmişlerdir. Ayrıca ince filmlerin üretim prosedür maliyetinin uygun, basit ve kullanışlı olduğunu belirtmişlerdir. Elde edilen SiO₂-TiO₂ temelli çok fonksiyonlu ince filmlerin güneş hücrelerini dış ortam koşullarına karşı koruyabileceğini söylemişlerdir.

Law vd. (2022), yaptıkları çalışmalarında silikon FV modüllerle kullanılmak üzere tasarlanmış geniş bantlı çok katmanlı yansıma önleyici kaplamanın tasarımını ve ticari gözenekli SiO₂ sol-jel kaplamalara göre avantajlarını incelemişlerdir. SiO₂ ve ZrO₂'yi içeren altı katmanlı yansıma önleyici kaplamayı daha sonra yüksek hızlı darbeli DC magnetron püskürtme yöntemini kullanarak cam üzerine biriktirmişlerdir. Yansıma kayıplarının, kaplanmamış cama kıyasla mutlak olarak %2.4 azaldığını ve ticari SiO₂ kaplamaların yansımayı %2.2 azalttığını tespit etmişlerdir. Bu kaplamanın güneş piline ulaşan ışınımı arttırmasından dolayı kısa devre akım yoğunluğunu ve spektral dönüşüm verimliliğini %17.1'den %17.5'e çıkardığını belirtmişlerdir. Ayrıca bu kaplamanın ortam koşullarına göre sağlam ve aşınmaya karşı dayanıklı olduğunu ve gözenekli SiO₂ anti-reflektif kaplamaların ise aşınma hasarına ve su girişine karşı hassas olduklarını bulmuşlardır.

Bu çalışmaların yanısıra, birçok araştırmacı FV panellerin yüzey kaplamalarının hem ışın geçirgenliğinin hemde toz gibi kirliliklerin üzerinde tutmama özelliğine sahip kaplamaları üzerinde çalışmışlardır. Günümüzde, enerji verimliliğini artırmak için FV panellerinin cam yüzeyleri nano malzemeler ile kaplanmaktadır. FV panel yüzeyinin, içeriğinde nano boyutta TiO₂, SiO₂ vb. partiküller barındıran katman veya katmanlar ile kaplanması, yüzeye kendi kendini temizleme, kolay temizlenebilme, antimikrobiyel, aşınmazlık, çizilmeye karşı dayanıklılık, korozyon gibi birçok farklı üstün özellik katabilmektedir. Bu yüzey özelliklerinin aktivitesini arttırmak için yüzeyin fotokatalitik etkisi bulunan malzemeler ile kaplandığı literatür çalışmalarında görülmektedir (Lee, 2016; Sayılkan, 2007). Fotokatalitik reaksiyon; bir katalist aracılığı ile fotonların ışık enerjisinin elektrokimyasal enerjiye transferine denir. Kısaca fotokatalist, ışıktaki enerji aracılığı ile yüzeyinde güçlü oksidasyonun meydana geldiği bir yarı iletken malzemedir. Birçok yarı iletken üzerinde yapılan fotokataliz testlerinin sonucunda TiO₂'nin UV ışık altındaki güçlü oksidasyon yeteneği, kimyasal stabilitesi ve toksik olmaması sebebi ile fotokataliz için en uygun yarı iletken olduğu belirtilmektedir. Bu yarı iletkenler arasında, TiO₂ tabanlı kaplamaların yüzeye uygulanması ile alakalı çok sayıda çalışma bulunmaktadır. (Xie vd., 2016; He vd., 2016; Roguska vd., 2014; Schneider vd., 2014).

Aynı zamanda yapılan araştırmalarda, TiO₂ içerisine farklı elementlerin veya oksitlerin katılması ile bant aralığının azaltılması da ultraviyole ışığın emilimini arttırmak için önemli diğer bir yol olduğu çalışmalarda görülmektedir (Marimuthu vd., 2016; Moradi vd., 2016).

Xu vd., (2009), yaptıkları çalışmalarında, sol-jel yöntemi ile yüzeye kaplanan gadolinyum (Gd) katkılı ve katkısız TiO₂ nanopartiküllerin fotokatalitik aktivitelerini incelemişlerdir. İnceleme sonucunda, Gd katkılı numunenin hem UV hem de görünür bölge altında incelenen fotokatalitik aktivitesinin, saf titanya kaplamasına göre daha iyi bir aktivite gösterdiğini tespit etmişlerdir.

Ruifen vd. (2015), yaptıkları çalışmalarında sol-jel yöntemi ile yüzeye kaplanan evropiyum (Eu) ve itriyum (Y) katkılı ve katkısız TiO₂ nanopartiküllerin fotokatalitik aktivitelerini incelemişlerdir. Hem Y hem de Eu katkılı TiO₂ kaplamaların UV-VIS spektrofotometre ile elde edilen ölçümlerinde, görünür ışık bölgelerinde soğurma bantlarına sahip olduklarını tespit etmişlerdir. Ancak katkısız TiO₂ kaplamasının görünür ışık bölgesinde emilim yapmadığını belirtmişlerdir. Sonuç olarak tüm katkılı TiO₂ kaplamaların katkısız TiO₂ kaplamasına göre daha yüksek fotokatalitik aktivitede olduğunu belirtmişlerdir.

Öte yandan Behnajady vd., (2008), yaptıkları çalışmalarında, sol-jel yöntemi ile yüzeye kaplanan gümüş (Ag) katkılı ve katkısız TiO₂ nanopartiküllerin fotokatalitik aktivitelerini incelemişlerdir. UV ölçümlerine göre Ag katkılı TiO₂ kaplamasının katkısız TiO₂ kaplamasına göre daha etkin bir fotokatalitik etki gösterdiğini belirtmişlerdir.

3. TEORİK BİLGİLER

Bu bölümde, sırasıyla güneş enerjisinin özellikleri, güneş enerjisini elektrik enerjisine çeviren güneş hücrelerinin teorisi, çalışma prensibi, enerji verimliliğini etkileyen faktörler ve yüzey kaplamasının etkileri detaylı bir şekilde verilmiştir.

3.1. Güneş Enerjisi

Güneş enerjisi bilinen enerji kaynakları arasında en bol bulunan ve tükenmez olarak bilinen enerji kaynağıdır. Bu enerji güneşte füzyon olayı ile oluşur. Güneş enerjisinin bir kısmı yeryüzüne ulaşır. Atmosfere ulaştığı zaman saniyede 1 m² 'ye gelen enerji miktarı 1367 jul (J)'dür. Bu enerji dalga paketçikleri ile taşınır ve güneş enerjisinin tayfı Şekil 3.1'de verildiği gibidir (Ossila, 2023).

Şekil 3.1. Güneş enerjisi tayfı

Diğer taraftan, Şekil 3.1'de görülen güneş enerjisi tayf eğrisinin altında kalan alan ise toplam güneş enerjisini gösterir.

3.1.1. Dünya yüzeyine ulaşan güneş enerjisi

Atmosfer dışına gelen güneş enerjisi atmosferden geçerek yeryüzüne ulaşır. Güneş enerjisi tayfında da görüldüğü gibi, değişik dalga boyundaki dalga boylu elektromanyetik dalgalardan (değişik enerjiye sahip foton parçacıklardan) oluşmaktadır. Bu değişik dalga boyuna sahip olan dalgalar değişik tabakalardan geçerken sahip oldukları değişik soğurma katsayılarına sahip oldukları için değişik oranlarda soğurularak yeryüzüne ulaşırlar. Yeryüzüne ulaşan ortalama güneş enerjisi yaklaşık 900 W/m² (j.s⁻¹.m⁻²)'dir. Fakat, bu enerji miktarı bu enerjinin geldiği yerin enlem, boylamına ve geldiği zamana göre değişir. Yeryüzüne ulaşan ve atmosfer dışında bulunan güneş enerjisi tayfı Şekil 3.2'de verilmektedir (Bozzetti vd., 2010).

Şekil 3.2. Yeryüzüne ulaşan ve atmosfer dışında bulunan güneş enerjisi tayfı

Şekil 3.3'te spektral ışınımın görünür bölgeyi kapsayan dalga boyuna göre spektrumu görülmektedir.

Şekil 3.3. Spektral ışınımın görünür bölgeyi kapsayan dalga boyuna göre spektrumu

Şekil 3.3 göz önüne alınarak, görünür bölge içerisindeki her bir dalga boyu aralığı için spektrumun altında kalan alanlar dikkate alınarak, belirtilen dalga boyu aralıklarına gelen foton sayısı aşağıdaki Çizelge 3.1'de görülmektedir.

Dalga Boyu (nm)	Foton Sayısı (×10 ¹⁹)
300-400	0,057
400-500	24,4
500-600	36,3
600-700	42
700-800	39,7

Çizelge 3.1. Belirtilen dalga boyu aralıklarına gelen foton sayısı

Spektral ışınımın görünür bölgeyi kapsayan dalga boyuna göre spektrumu incelendiğinde, 300-400 nm dalga boyu aralığında hesaplanan foton sayısının $0,057 \times 10^{19}$, 400-500 nm dalga boyu aralığında hesaplanan foton sayısının 24,4x10¹⁹, 500-600 nm dalga boyu aralığında hesaplanan foton sayısının 36,3x10¹⁹, 600-700 nm dalga boyu aralığında hesaplanan foton sayısının 42x10¹⁹ ve 700-800 nm dalga boyu aralığında hesaplanan foton sayısının 42x10¹⁹ ve 700-800 nm dalga boyu aralığında hesaplanan foton sayısının 39,7x10¹⁹ olduğu görülmektedir.

Ülkemiz açısından da bakacak olursak ülkemizin bulunduğu coğrafi konumun etkisiyle güneş enerjisi potansiyeli azımsanmayacak ölçüdedir. Bu da güneş enerjisinin verimli bir yakıt formuna dönüştürülmesi için önemli bir özelliktir. Yenilenebilir enerji kaynakları kurumu tarafından yapılan çalışmaya göre ülkemizin yıllık ortalama 2640 saat ve bu da günlük toplam 7,2 saat güneşlenme süresinin olduğu belirtilmiştir. Ortalama ışınım şiddeti değerinin ise yıllık 1311 kWh/m²-yıl, yani günlük 3,6 kWh/m² olduğu bulunmuştur. Şekil 3.4'te ülkemizin güneş enerjisi potansiyeli atlası görülmektedir (Enerji ve Tabii Kaynaklar Bakanlığı, 2023).

Şekil 3.4. Ülkemizin güneş enerjisi potansiyeli atlası

3.2. Güneş Hücresi Yapısı

Bu kısımda, fotovoltaik pil olarak da bilinen güneş hücresinin yapısı ve çalışma prensibi hakkında gerekli bilgiler verilecektir.

3.2.1. Yalıtkan ve yarı iletken maddelerde enerji bandı aralığı

Yalıtkan maddeleri oluşturan molekül veya atomların en dış yörüngesinde bulunan elektronlar çok sıkı bir şekilde atomlara veya moleküllere bağlıdır. Bu elektronları sistemden ayırmak için çok büyük enerjiye gereksinim vardır. İletken ve yarıiletken maddelerin bant aralığı enerjilerine kıyasla oldukça büyüktür. Yani bir elektron, maddenin atom veya moleküllerine çok sıkı bir şekilde bağlı olduğundan iletkenlik bandında elektron bulunmamakta olup madde elektrik akımını iletemez durumdadır. Elektronların iletkenlik bandına geçebilmeleri için yasak bant aralığını geçmeleri gerekmektedir. Yarıiletken maddelerle kıyaslandığında, yasak bant aralığı yalıtkan maddelerde çok daha geniş durumda olduğundan maddenin iletken duruma gerekmektedir. Bu enerji, yüksek mertebelerdedir. Dolayısıyla maddelerin elektrik iletimlerini oldukça zor kılar ve bu maddeler yalıtkan maddeler olarak adlandırılırlar.

Yarı iletken maddelerde ise enerji bant aralığı yalıtkan maddelere göre çok küçüktür ve duruma göre bazen iletken ve bazen de yalıtkan gibi davranırlar. Yarı iletken maddelerde bu enerji 4,0 eV civarında değişir. Yalıtkan, yarı iletken ve iletken maddelerde enerji bant yapısı Şekil 3.4'te görüldüğü gibi sırasıyla verilmektedir.

Şekil 3.5. Yalıtkan, yarı iletken ve iletken maddelerde enerji bandı yapısı

3.2.2. III, IV ve V' inci grup elementleri ve özellikleri

Güneş hücrelerinin oluşturulmasında kullanılan yarıiletken elementler çoğunlukla Çizelge 3.2'de görülen III, IV ve V' inci grup elementleridir. Periyodik tabloda bulunan gruplar, elementlerin son yörüngelerinde bulundurdukları elektron sayılarına göre düzenlenmiştir. Yani III. Grupta bulunan elementlerin son yörüngelerinde 3, IV grupta bulunan elementlerin son yörüngelerinde 4 ve V. grupta bulunan elementlerin son yörüngelerinde 5 elektron bulunmaktadır. Elektron konfigürasyonlarına göre, III. ve IV. Grup elementlerin katkılanması ile oluşturulan yarıiletken yapıya p-tipi, IV. ve V. Grup elementlerin katkılanması ile oluşturulan yarıiletken yapıya da n-tipi yarıiletken denir. Çizelge 3.2'de III, IV ve V grup elementleri ve elektron konfigürasyonları görülmektedir.

3. Grup	4. Grup	5. Grup
В	С	Ν
_		
2s ² 2p	$2s^22p^2$	$2s^22p^3$
Al	Si	Р
3s ² 3p	$3s^23p^2$	$3s^23p^3$
<u> </u>	<u>C</u> -	A -
Ga	Ge	AS
$4s^24p$	$4s^24p^2$	$4s^24p^3$
In	Sn	Sb
5s ² 5p	$5s^25p^2$	$5s^25p^3$
Ti	Pb	Bi
6s ² 6p	6s ² 6p ²	6s ² 6p ³

Çizelge 3.2. III, IV ve V grup elementleri ve elektron konfigürasyonları

3.2.3. P-tipi yarıiletkenler

Şekil 3.6'da III, IV ve V' inci gruplarda bulunan elektronların s ve p yörüngelerindeki konfigürasyonları görülmektedir.

Şekil 3.6. III, IV ve V' inci gruplarda bulunan elektronların s ve p yörüngelerindeki konfigürasyonları

Atoma bağlı durumda bulunan elektronların yörüngelere yerleşimi ilk olarak s orbitalinin doldurulmasıyla başlar. Kalan elektronlar ise sırasıyla p, d ve f orbitallerini doldururlar. S orbitali dolduktan sonra her bir yörüngenin sahip olduğu enerji seviyeleri, yeterli elektron sayısı mevcut olduğunda, elektronlar tarafından teker teker sırayla birer elektron geçişiyle doldurulur. Sonrasında her enerji seviyesine birer elektron daha eklenerek çiftlenir ve atom kararlı hale gelir.

Çizelge 3.1'de verilen elementlerden III. grupta bulunan elementler, IV. grupta bulunan elementler ile katkılandıklarında, son yörüngelerinde bulundurdukları 3 elektron, IV. Grupta bulunan elementlerden herhangi birisinin 3 elektronu ile elektronların ortak kullanım prensibine dayanan kovalent bağı oluşturur. Bu bağ sonrasında oluşan yapıda, bir elektronun karşılığı oluşmaz ve bir boşluk meydana gelir. Bu boşluk (Hol) olarak adlandırılır ve elektrik akımına katılır. Bu tür elektron dizilimi olan yarıiletken yapılara, p-tipi yarıiletken yapılar denir. Şekil 3.7'de Silisyum (Si) ve Alüminyum (Al) kullanılarak oluşturulan bir p-tipi yarıiletken malzemede elektronların şematik bağ yapısı gösterilmiştir.

Şekil 3.7. P-tipi yarıiletken malzemede elektronların şematik bağ yapısı

3.2.3.1. P-tipi yarıiletkenlerde enerji bant yapısı

Şekil 3.8'de sırasıyla p-tipi bir yarıiletkende 0 K' de ve 300 K' de enerji bant yapıları görülmektedir. Teorik olarak iletkenlik bandı ile bağlanma bandı arasında tam orta noktayı temsil eden fermi enerji seviyesi, 4. Grup elementlerin, 3. Grup elementlerle katkılanmasıyla birlikte bağlanma bandına doğru yaklaşır. Böylece elektronların

bağlanma bandından iletkenlik bandına geçişleri daha kolay bir şekilde gerçekleşir. Şekil 3.8'de P tipi bir yarıiletkende enerji bant yapısı görülmektedir.

Şekil 3.8. P tipi bir yarıiletkende enerji bant yapısı

3.2.4. N-tipi yarıiletkenler

IV. grup elementlerinin V. grup elementleri ile katkılanmaları durumunda, IV. grupta bulunan elementlerin son yörüngesinde bulunan dört elektron ile V. grupta bulunan elementlerin dört elektronu kovalent bağ ile bağlanır. Bu bağlanma sonucunda, bir elektron fazlalığı meydana gelir. Bu elektron, bulunduğu ortamda serbest dolaşmaya başlar ve elektron fazlalığı nedeniyle bu malzeme n-tipi yarıiletken madde olarak adlandırılır.

Şekil 3.9'da IV. grup elementi olan Germanyum (Ge) ile V. grup elementi olan P'nin oluşturduğu n-tipi yarıiletken yapı gösterilmiştir.

Şekil 3.9. N-tipi yarıiletken malzemede elektronların şematik bağ yapısı

3.2.4.1. N-tipi yarıiletkenlerde enerji bant yapısı

Teorik olarak iletkenlik bandı ile bağlanma bandı arasında tam orta noktayı temsil eden fermi enerji seviyesi, 4. Grup elementlerin, 5. Grup elementlerle katkılanmasıyla birlikte iletkenlik bandına doğru yaklaşır. Böylece elektronların iletkenlik bandına geçişleri daha kolay bir şekilde gerçekleşmeye başlar. Örnek olarak 4. Grup elementi olan Ge atomu ve 5. Grup elementi olan Arsenik (As) ele alınacak olursa, As elementinin son yörüngesinde bulunan beş elektron iletkenlik bandına transfer edildiğinde, arsenik iyonu pozitif yüklü iyon haline gelir. Her As atomu yarıiletkene serbest bir elektron verir. Bu şekilde elektron fazlalığını sağladığından verici (donor) olarak adlandırılır. Şekil 3.10'da sırasıyla n-tipi bir yarıiletkende enerji bant yapıları görülmektedir.

Şekil 3.10. N tipi yarıiletkende enerji bant yapıları

3.2.5. P-N Birleşimi

Şekil 3.11'de sırasıyla p-n birleşim yüzeyinin sağında ve solunda azınlık – ve + yük taşıyıcılar oluşan deplasyon bölgesi diye de adlandırılan bölge ve azınlık – ve + yük taşıyıcıların yük yoğunluğu dağılımları ve matematiksel ifadelerden yararlanarak deplasyon bölgesinde oluşan elektrik alanları ve potansiyeller görülmektedir. P-tipi malzemenin sağında azınlık yük taşıyıcılardan oluşan bölge, n-tipi malzemede bulunan elektronlardan bir kısmının p-tipi bölgede difüz olup bu bölgedeki boşlukla birleşirken, n-tipi bölgede arkalarında boşluklar bırakarak azınlık + yüklerden oluşan bölgeyi oluştururlar.

Benzer şekilde, p-tipi bölgede bulunan boşluklardan bir kısmı, n-tipi bölgeye geçerek orada bulunan elektronlar ile birleşirler ve arkalarında negatif yüklü iyonlar bırakmaları suretiyle – azınlık yük taşıyıcılardan oluşan bölgeyi oluştururlar. Azınlık – ve + azınlık yük dağılımda azınlık – ve + yüklerin x-ekseni boyunca yayıldıkları ve sabit yoğunluklara sahip oldukları görülmektedir.

Şekil 3.11. P-N birleşiminde deplasyon bölgesindeki yük dağılımı, minör – ve + yüklerin dağılımı, oluşan elektrik alanı ve oluşan potansiyel

Şekil 3.11'de görüldüğü gibi, deplasyon bölgesinde bir potansiyel bariyeri oluşur. Oluşan bu potansiyel bariyeri ve deplasyon bölgesinin boyunun uzunluğu bu sistemin güneş hücresi gibi davranmasını sağlayan önemli parametrelerdir.

3.3. FV Panelin Verimini Etkileyen Yapısal Faktörler

Bir FV panelin verimi onun en önemli özelliklerinden biridir ve onun üzerine düşen daha önce bahsedilen fotonlardan ne kadar elektrik enerjisi ürettiğini gösterir. Bu nedenle, FV panelde bulunan yarıiletken hücrelerin üzerine düşen fotonların elektrik enerjisini ürettiği ana kadar geçen sürede aldıkları yol boyunca ne kadarının sistem tarafından soğurulduğunun bilinmesi gerekir. Şekil 3.12'de, bir FV panelin şematik yapısı verilmektedir (Electricalnotebook, 2023).

Şekil 3.12. Bir FV panelin şematik görünümü

Sekil 3.12'de de görüldüğü gibi fotonlar ilk önce FV panel yüzeyini kaplayan tabakadan geçmektedir ve bu fotonlardan bir kısmı bu tabakadan geçerken soğurulurlar. Geriye kalan fotonlar p ve n tipi tabakalardan geçer ve bu bölgelerde bağlanma bandında bulunan elektronlarla etkileşerek onlardan bazılarını belli oranda iletkenlik bandına geçirerek serbest hale getirirler. Etkileşime girmeyen fotonlar ilk kayıp olan fotonlardır. İkinci kayıp ise, serbest hale gelen, fakat enerjisi enerji bandı aralığından daha düşük enerjiye sahip fotonlar tarafından serbest hale getirilen elektronlardır. Üçüncü kayıp, enerjisi enerji bant aralığından büyük fotonlar tarafından serbest hale getirilen elektronlar vardır. Bu elektronların bir ömürleri vardır ve aynı zamanda bu zaman içinde gidebilecekleri bir yol vardır. Eğer bu serbest elektronlar deplasyon bölgesine ulaşacak uzaklıkta ise elektrik akımı oluştururlar, eğer ulaşamazlarsa akım oluşmasına katkıda bulunamazlar. Böylece bu elektronlarda kayıp olan elektronlardır. Dördüncü kayıp ise ortamda bulunan boşlukların oluşturduğu merkeze rastlayan ve o merkezlerle birleşerek deplasyon bölgesine ulaşamayan elektronların neden olduğu kayıptır. Bu kayıplardan başka dış etkenlerden (yansıma, toz parçacıkları vb.) kaynaklanan kayıp faktörü vardır. Bu kayıp faktörlerini azaltmak için güneş ışınımının geçirgenliğini arttırmayı hedefleyen nanokaplamalar FV panel yüzeyine çeşitli yöntemlerle kaplanmaktadır.

3.4. Üretilen FV Panel Camında Soğurma Teorisi

Bu çalışmada, FV panelin cam yüzeyini üretilen nanolif kaplamalar ile kaplayarak paneli dış ortam etkilerden korumak ve güneşten gelen ışınımın yüzeyden yansımasını azaltarak FV hücreye daha fazla güneş ışınımının geçirilmesi amaçlanmıştır.

Elde edilen bu nanolif kaplı camlar, gelen ışınımın bir kısmını soğurmaktadır. Şekil 3.12'de yüzeyi d kalınlığında FV ile kaplanmış bir FV hücre görülmektedir. FV nanolif kaplamalı yüzeye gelen güneş ışınımı, (fotonlar) oluşturulan d kalınlığındaki kaplama tabakasının yüzeyine çarptıktan sonra, bir kısmı yansır bir kısmı tabakadan geçerken bir kısmı da kaplama tabakası tarafından soğurulur. Bu kaplama tabakasından geçen ışığın şiddeti aşağıdaki gibidir.

$$\mathbf{N} = \mathbf{N}_{\mathbf{0}} \, \mathbf{e}^{-\mathbf{d} \, \boldsymbol{\alpha}_{\mathbf{i}}} \tag{3.1}$$

N, d kalınlığında olan örtü tabakasından geçen güneş enerjisi şiddeti, N_o, kaplama tabakası yüzeyine gelen güneş enerjisi şiddeti ve α_i güneş enerjisi tayfını oluşturan i ninci dalganın kaplama tabakası tarafından soğurulma katsayısıdır. Şekil 3.13'te FV cam yüzey üzerine düşen güneş ışınımının hareketleri görülmektedir.

Şekil 3.13. FV cam yüzey üzerine düşen güneş ışınımının hareketleri
Örtü tabakasının soğurulma katsayısının değeri denklem 3.1'den yola çıkarak aşağıda sırasıyla görülen denklem 3.2, denklem 3.3 ve denklem 3.4'ten yararlanılarak elde edilir (Wikipedia, 2023).

$$e^{d \alpha_i} = \frac{N_o}{N}$$
(3.2)

Denklem 3.2'nin her iki tarafının logaritması alınırsa denklem 3.3 elde edilir.

$$d \alpha_i = \ln \frac{N_0}{N}$$
(3.3)

Denklem 3.3'ten hareketle, α_i ifadesi denklem 3.4'te görüldüğü gibi elde edilir.

$$\alpha_{i} = \frac{1}{d} \ln \frac{N_{0}}{N}$$
(3.4)

Denklem 3.4'te görülen d, N ve N_0 değerleri, deneysel ölçümlerden elde edilen değerlerdir.

3.5. FV Panelin Teknik Parametreleri

FV panelde bulunan bir güneş hücresini ifade etmek için genelde dört parametre kullanılır. Bunlar kısa devre akımı (I_{sc}), açık devre gerilimi (V_{oc}), doluluk faktörü (FF) ve güç dönüşüm verimi (η) dir. İdeal olarak I_{sc} 'nin maksimum akıma (I_{max}) eşit olması istenir.

3.5.1. Kısa devre akımı

FV pilin yüksüz durumda iken ışınım altında ölçülen maksimum akım miktarına kısa devre akımı denir. Birimi amper veya miliamperdir. Kısa devre akımının olduğu yerde gerilim değeri sıfırdır.

3.5.2. Açık devre gerilimi

FV pilin dış elektrik devresinden geçen akımın sıfır (I=0) olduğu durumda, devre uçları arasında ölçülen gerilim değerine "açık devre gerilimi" denir. Bir FV pilin verebileceği maksimum gerilim değeridir. Birimi volt (V) veya milivolt (mV) 'tur. Bir güneş pili açık devre olduğunda ve hiçbir yük bağlanmadığında, akım minimum (sıfır) değerinde, gerilim ise maksimum değerde olacaktır.

3.5.3. Güç dönüşüm verimi

Güneşten FV yüzeye düşen ışınımın elektrik enerjisine hangi oranda dönüştürüldüğünü göstermektedir.

$$\eta = \frac{P_{\text{max}}}{AE_{\text{e}}} \tag{3.5}$$

Bir FV hücrenin "güç dönüşüm verimi" üretilen maksimum çıkış gücünün, güneşten FV yüzeye düşen ışınımın gücüne oranı olarak tanımlanır. Yüzeye düşen ışınımın gücünü hesaplarken, güneş ışınım değeri (E_e), W/m² cinsinden ölçülür ve FV hücrenin m² cinsinden alanı (A) olarak tanımlanmaktadır.

3.5.4. Dolum faktörü

FV hücrenin maksimum güç değerinin (P_{max}), V_{oc} ve I_{sc} 'nin çarpımına bölünmesi ile FF bulunur.

$$FF = \frac{P_{mp}}{P_T} = \frac{V_{mp} \times I_{mp}}{V_{oc} \times I_{sc}}$$
(3.6)

FF, FV hücrenin idealliğinin bir ölçütüdür. İdeal bir güneş pilinde 1'e eşittir. Bu nedenle 1'e yakın olması, herhangi bir FV hücrenin enerji verimliliğinin daha yüksek olmasına etki etmektedir.

3.5.5. Fotovoltaik panelin akım-gerilim karakteristiği

Bir FV paneldeki akım ve gerilimin yükten etkileniş şekli, panelin elektriksel parametrelerini belirler. Gün içindeki belli saat dilimlerinde değişken değerlerin (sıcaklık, gün ışığı) en az olduğu kabul edilerek, yükün açık devre konumundan uçların kısa devre olduğu konuma ayarlanarak kaydedilen akım ve gerilim değerlerine göre FV panelin I-V karakteristiği oluşturulur. Bir FV panelin I-V karakteristiği ışınım şiddeti (W/m²) yoğunluğu ile değişmektedir. Şekil 3.14'te FV panelin I-V karakteristik eğrisi görülmektedir.

Şekil 3.14. FV panelin I-V karakteristik eğrisi

Maksimum güç noktası, akım ve gerilim değerleri doğrultusunda bir FV panelden elde edilebilen maksimum güç değeridir. I-V karakteristiğinin altında yer alan maksimum dikdörtgen alan FF, o esnada FV panel tarafından üretilen maksimum güç değeri olan Pmax'ı verir. Bu güçteki akım Imax ile ve gerilim değeri ise Vmax olarak belirtilir. FV panele ulaşan ışınım miktarı ile doğru orantılı olarak yükte çalışma oranı da artmaya başladığında, FV uçlarındaki Voc gerilim değeri azalır ve FV panel akım değeri artar. Fakat bir noktadan sonra FV panel akım değeri artmaya devam ederken FV panel gerilim değeri hızla düşer. FV panel, Vmax ve Imax değerlerine ulaştığında o anda artık FV panelden maksimum güç elde edilebilmektedir.

3.6. FV Panellerin Bağlantı Yapısı ve Mekanik Katmanları

FV panellerin bağlantı yapısı, gereken toplam güç ihtiyacına göre FV hücrelerin birbirlerine seri-paralel bağlanmasıyla FV panel oluşturulabilir. FV panellerin de birbirlerine seri-paralel bağlanmasıyla FV dizileri oluşturulabilir. Seri ve paralel bağlantıların amacı FV panellere enerji bağlantısı yapılacak olan ekipman veya ekipmanların çalışma akımı ve gerilimi değerleri arasında kalabilmektir. Şekil 3.15'te FV sistemlerin bağlantı modelleri görülmektedir.

Şekil 3.15. FV sistemlerin bağlantı modelleri

Şekil 3.16'da da FV paneli dıştan içe doğru oluşturan tüm katmanlar görülmektedir.

Şekil 3.16. FV paneli dıştan içe doğru oluşturan tüm katmanlar

FV panelin en üst katmanını sarmalayan FV paneli mekanik hasarlara karşı koruyan alüminyum çerçeve, bu çerçeve içine oturtulmuş UV geçirgenliği yüksek olan temperlenmiş cam bulunmaktadır. FV panelin ortam koşullarına (nem, sıcaklık vs.) karşı daha dayanıklı olması için cam ile FV hücre arasında sızdırmazlık sağlayan ve

FV hücrenin hem arkasına hem de önünü kaplayan etilen vinil asetat (EVA) malzemesi bulunmaktadır. Ön EVA kaplamasının yüzeyine yüksek geçirgenliğe sahip temperli cam ve arka EVA kaplamasının üzerine ise oldukça dayanıklı, polimer esaslı bir hücre sırt tabakası yerleştirilir. Ardından, yapısal sağlamlık ve fiziksel etmenlere karşı uzun süreli koruma sağlamak için, çevresine su geçirmez bir yapıştırıcı ile yapıştırılmış sert alüminyum çerçeve monte edilir. Tüm bu malzemelerin montajı yapıldıktan sonra son olarak FV panelin arka tarafına elektriksel bağlantının güvenli bir şekilde tamamlanması için konnektör içeren bağlantı kutusu eklenir. Artık FV panel teste tabi tutulmak için hazır hale getirilmiştir.

3.7. Fotovoltaik Panellerin Verimini Etkileyen Çevresel ve Fiziksel Unsurlar

3.7.1. Güneş ışınımının yansıması

FV Panelin yüzeyine ulaşan güneş ışınımının çok büyük bir kısmı hücreler tarafından emilirken, az bir kısmı emilmeden FV panelin cam yüzeyinden geri yansıyarak yansıma sonucu ışınım kaybına neden olur. FV sistemlerde güneş ışınımından elektrik enerjisine dönüşüm oranı, ilk etapta emilen güneş ışınım miktarı ile doğru orantılı olduğu için FV panellerin üretim safhasında ışınımı daha az yansıtan malzemelerin kullanılması dönüşüm oranını arttıracaktır. Bu yüzden, yüzeye gelen ışınım yansımalarının önlenmesi için FV paneller farklı katmanlardan üretilmektedir.

3.7.2. FV panellere ortam sıcaklığının etkisi

FV panel sıcaklığı hücrelerin çalışmasını etkileyen en önemli unsurlardan birisidir. Ortamdaki sıcaklığın artması sonucunda FV panelin enerji verimliliğinde de bir düşüş gözlenir Sıcaklık artışı zaman içinde p-n birleşiminin fiziksel olarak bozulmasına neden olur. Buna bağlı olarak, FV panellerin kullanım ömrü zamanla azalır. Diğer taraftan, FV hücreler, bulundukları ortamdaki sıcaklığın azalması ile daha fazla gerilim üretirlerken, bulundukları ortamdaki sıcaklığın artışı ile ise daha az gerilim üretirler. Bunun nedeni, sıcaklığın artmasıyla elektronların birbiriyle çarpışmaları da artması ve birbirlerinin deplasyon bölgesine ulaşmalarını engellemeleridir. Tüm FV paneller, standart test ortamında; 25 °C'de, 1000 W/m² ışınım altında ve 1,5 hava kütlesine karşılık gelen ışık spektrumunda test edilir. Fakat gerçek ortam koşullarında test ortamından daha farklı parametreler oluşabilmektedir. Bu yüzden, sıcaklık değerinin artması ile 25°C'nin üzerindeki çalışma koşulları ifade edilmektedir.

3.7.3. FV panel camlarının yüzey kirliliği

FV sistemin kurulumunun yapılacağı yerin toprak yapısı ve bölgenin rüzgâr potansiyeli dikkate alınması gerekmektedir. Bölgedeki rüzgârın etkisiyle FV panellerin yüzeylerinde oluşan tozlanma enerji verimliliğinin düşmesine sebep olacaktır. Tozlanmaya sebep olan toz parçacıkları bazı durumlarda atmosferde hareketlenerek bulunduğu ortamdaki FV panellerin yüzeylerine tutunmaktadır.

Mani ve Pillai (2010), yaptıkları çalışmalarında, polenlerin (mantarlar, bakteri ve bitki örtüsü) ve mikrofiberlerin (kıyafet, halı, keten vb.) tozlanmaya sebep olan toz parçacıkları olduğunu belirtmişlerdir. Yukarda bahsedilen toz parçacıklarının farklı özelliklerdeki yapısı nedeniyle FV panel yüzeyinde farklı toz yerleşim koşulları meydana gelir. Örnek vermemiz gerekirse; Rahman vd. (2017), yaptıkları çalışmalarında küçük toz parçacıklarının yüzeye yerleşme oranı büyük toz parçacıklarına göre daha fazla olduğunu belirtmişlerdir. FV panellerin yüzeyinde oluşan tozlanma sonucunda güneşten gelen ışınım emiliminin azalması ile oluşan verimlilik kayıpları önem taşımaktadır. Örneğin Piliougine vd. (2008), yaptıkları çalışmalarında, özellikle yağışın az olduğu bölgelerde bulunan FV sistemlerin enerji verimlilik kayıp oranlarının %15'e kadar yükseldiğini belirtmişlerdir. Sonuç olarak literatürde bulunan çalışmalarda da görüldüğü gibi, TiO₂ malzemesine Eu, Gd ve Ag katkılanması ile fotokatalitik etki artmaktadır. Ayrıca amorf yapıda bulunan TiO₂ tabanlı malzemelere farklı elementlerin katkılandırılmasının fotokatalitik etkilerini iyileştirdiği de çalışmalarda gözlenmiştir (Huang vd., 2012).

3.8. Elektro-Eğirme Yöntemi ile Nanolif Üretimi

Nanolifler, tasarlandıkları amaca yönelik olarak, çözeltilerin içerisinde bulunan kimyasal bileşenlerin iç yapıya daha hızlı yayılarak yüzey üzerinde yüksek yüzey alanı sağlama avantajına sahiptir. Bu tasarımı takip etmek için, farklı malzemelerden ve karışımlardan nano boyutta lifler üretilebilmektedir.

Günümüzde de birçok çalışmada nanolif üretimi için en çok tercih edilen yöntemin elektro-eğirme yöntemi olduğu görülmektedir. Literatürden örnek verirsek; Bhardwaj ve Kundu, (2010) yaptıkları çalışmalarında farklı bileşim ve çapta, uzun boylarda katı ve boşluklu içyapıya sahip nanolif üretimi için elektro-eğirme yöntemini kullanmışlardır.

Elektro-eğirme cihazı; içinde polimer çözeltisinin bulunduğu şırınga, enjeksiyon pompası, yüksek voltaj Doğru Akım (DC) güç kaynağı ve toplayıcı levha olmak üzere dört ana bölümden oluşmaktadır. Dört ana kısımdan oluşan elektro-eğirme cihazının şematik olarak gösterimi Şekil 3.17'de verilmektedir.

Şekil 3.17. Elektro-eğirme cihazının şematik olarak gösterimi

Bu cihazın çalışma prensibinde, ilk olarak nanolif elde edilmesi istenilen çözelti şırıngaya eklenir. Ardından şırınga enjeksiyon (akış) pompasına yerleştirilir. Akış hızı istenilen değere getirilir. Yüksek voltajlı DC güç kaynağının çalışma gerilimi de istenilen değere getirildikten sonra sisteme enerji verilir. İğneden salınan sıvı elektrik alanının yoğunluğu arttıkça, iğne ucundaki çözelti yarım küre şeklindeki yüzeye uzar ve "Taylor konisi" olarak bilinen konik bir şekil oluşturur. Elektrik alanı kritik bir değere ulaştığında burada itici elektrik kuvveti yüzey gerilim kuvvetini yener. Ardından taylor konisinin ucundan yüklü bir çözelti jeti toplayıcı plakaya doğru fırlatılarak nanolifler elde edilir.

3.9. Sol-Jel Yöntemi

Sol-Jel, anorganik polimerizasyon tepkimeleri üzerine kurulan nano-parçacık üretiminde tercih edilen bir yöntemdir. Bu yöntem ile minerallerden ve kimyasallardan, istenilen ölçüde yüzey üzerinde homojen bir şekilde nanomalzeme üretilebilmektedir. Ayrıca nano-parçacık üretimi dışında yoğun malzemelerin, liflerin üretiminde ve ince film yüzey kaplamalarında, toz, kaplama ve fiber üretiminde de tercih edilen bir yöntemdir.

Sol-Jel yöntemi; çözelti oluşumu, hidroliz, polimerizasyon (tanecik oluşumu, taneciklerin büyümesi ve jelleşmesi), yoğunlaşma, jelleşme, yaşlandırma ve kurutma adımlarımdan oluşur. Sol-Jel yöntemi basamakları şematik gösterimi Şekil 3.18'de görüldüğü gibidir.

Şekil 3.18. Sol-Jel yöntemi basamakları şematik gösterimi

3.10. Antibakteriyel Testler

Antimikrobiyal duyarlılık testleri, bir antimikrobiyal maddenin belli bir mikroorganizma türüne karşı in-vitro etkinliğini tespit edebilmek için uygulanır. Bu duyarlılık testleri, "difüzyon" ve "dilüsyon" olmak üzere iki ana yöntem altında yapılır (Das vd., 2010). Tüm antimikrobiyal duyarlılık testlarinin doğru ve güvenilir olması için Clinical and Laboratory Standards Institute (CLSI) veya The European Committee on Antimicrobial Susceptibility Testing (EUCAST) dökümanlarında belirlenen referans suşlar (*S.aureus* ATCC 25923, *E.coli* ATCC 25922 vb.) kullanılarak test ve değerlendirme yapılmaktadır.

E. coli, hareketli, Gram negatif, indol pozitif, sitrat negatif, metil kırmızısı pozitif, üreaz ve Voges-proskauer testi negatif, fakültatif anaerob, spor oluşturmayan bir basildir (Gozali ve Rukmana 2023). Optimum gelişme sıcaklığı 37 °C olmakla beraber ortam koşulları uygun olduğunda 10-49 °C arasında da gelişebilmektedir. Optimum pH değeri ise 7,0 olup pH 4,5-9,5 arasında da gelişebilmektedir (Basavaraju ve Gunashree 2023). *E. coli*, insan ve çoğu sıcakkanlı hayvanların doğal bağırsak florasında bulunan ve birçok doku ve organda çeşitli enfeksiyonlara neden olabilen fırsatçı bir patojen bakteridir (Şahin ve Altan 2019).

S. aureus, hareketsiz, Gram pozitif, oksidaz negatif, katalaz ve koagülaz pozitif, fakültatif anaerob, yuvarlak veya ovale yakın şekilli mezofil bir bakteri türüdür. Optimum gelişme sıcaklığı 30-37 °C olmakla beraber ortam koşulları uygun olduğunda 7-48,5 °C arasında da gelişebilmektedir. Optimum pH değeri ise 4,2-9.3 olup pH 7-7,5 arasında da gelişebilmektedir (Le Loir vd., 2003). *S. aureus*, insanların ve memeli hayvanların deri ve mukozal yüzeylerinin normal florasında bulunabilen bir bakteridir ve sahip olduğu virulens faktörleri nedeniyle çeşitli enfeksiyon ve intoksikasyonlara da neden olabilmektedir (Bhatia ve Zahoor, 2007).

3.10.1. Diffüzyon Yöntemi

Bu yöntemde, belli konsantrasyondaki antimikrobiyal madde steril kâğıt disklere emdirilmekte ve test edilecek mikroorganizmanın inoküle edildiği katı besiyeri üzerine yerleştirilerek besiyerine diffüze olması sağlanır. İnkübasyon süresi sonunda disklerin etrafında oluşan inhibisyon zon çapları milimetre (mm) cinsinden cetvelle ölçülerek kalitatif olarak değerlendirilir (Das vd. 2010)

3.10.2. Dilüsyon Yöntemi

Dilüsyon yöntemi, bir antimikrobiyal maddenin, MİK (Minimum İnhibisyon Konsantrasyonu) ve MBK (Minimum Bakterisidal Konsantrasyonu) değerlerinin kantitatif olarak belirlenmesinde kullanılır. Antimikrobiyal maddenin bakteriyostatik (bakteri üremesini durduran) ve bakteriyosidal (bakteriyi öldüren) aktivitesini belirlemede en çok tercih edilen yöntemlerden birisidir (Yağan, 2014; Nasir vd. 2015). Dilüsyon metodu kendi içerisinde "makro" ve "mikro" olmak üzere ikiye

ayrılmaktadır. Her iki metodun ana prensibi aynıdır. Makrodilüsyonda test tüpleri, mikrodilüsyonda ise "U" ya da "V" temelli "mikroplate"ler kullanılır. Dilüsyon yöntemi, sıvı besiyeri ile ikişer kat seri seyreltilen antimikrobiyal madde ile incelenecek mikroorganizmanın belirli bir süre inkübasyonunun ardından besiyerlerinde üreme kontrollerine bakılarak MİK (bakteri üremesinin olmadığı en düşük antimikrobiyal madde konsantrasyonu) değerinin belirlenmesi esasına dayanır. MİK değeri elde edildikten sonra üremenin olmadığı tüp veya kuyucuklardan alınan belli miktarda örnek antimikrobiyal madde bulunmayan besiyerine pasaj yapılarak inkübasyon sonrası MBK değeri belirlenir. MBK değeri incelenen bakterinin %99.9'unu öldüren en düşük antimikrobiyal madde konsantrasyonu olarak tanımlanır (Parvekar vd., 2020).

3.11. Temas Açısı Ölçüm Testleri

Katı bir yüzeyin ıslanabilirliğini değerlendirmek için referans alınan ölçüme temas açısı denir. Temas açısı, havadaki bir sıvı damlacığının katı bir yüzey üzerindeki davranışını tanımlar. Ayrıca üç faz noktasındaki teğet ile katı yüzey arasındaki açı olarakta bilinir. Yüzey temas açısı <90° olan katı yüzeyler hidrofilik olarak kabul edilirken, yüzey temas açısı >90° olan yüzeyler hidrofobik olarak kabul edilir. Şekil 3.19'da yüzey temas açısı ölçüm cihazının şematik gösterimi bulunmaktadır (Zhao ve Jiang, 2018).

Şekil 3.19. Yüzey temas açısı ölçüm cihazının şematik gösterimi

Damlacık görüntü analiz yöntemine dayanan yüzey temas açısı ölçüm cihazı temel olarak, damlanın bırakıldığı bölüm, ışık kaynağı, mikro şırınga, yüksek çözünürlüklü bir kamera ve bir bilgisayardan oluşur. Bu cihazda temas açıları pendant (asılı) damla yöntemiyle tespit edilebilmektedir.

4. MATERYAL VE METOD

Çalışmanın bu kısmında sırasıyla, karışımlar için kullanılan tüm malzemeler, karışımlar ile ilgili bilgiler, elektro-eğirme yöntemi kullanılarak elde edilen nanolifler, nanolif kaplı yüzeylerin üzerine sol-jel yöntemi ile şeffaf kaplama işlemi, FV panel düzeneğin kurulum işlemi ve numune yüzeylerinin karakterizasyonu ile ilgili bilgilere yer verilerek çalışmanın tüm detaylarından bahsedilmiştir.

4.1. Çalışmada Kullanılan Malzemeler

Tezin bu bölümünde çalışmada kullanılan kimyasal ve cam malzemeler hakkında bilgi verilmiştir.

3.1.1. Kimyasal malzemeler

Çalışmada kullanılan kimyasallara ait teknik özellikler Çizelge 4.1 'de verilmiştir.

Kullanılan Malzemeler	Formülü	CAS No	Marka
(3-Glycidyloxypropyl)trimethoxysilane	$C_9H_{20}O_5Si$	2530-83-8	Sigma-Aldrich
Ethanol	C_2H_6O	64-17-5	Merck
(3-Aminopropyl)triethoxysilane	C ₉ H ₂₃ NO ₃ Si	919-30-2	Sigma-Aldrich
Colloidal Silica	SiO ₂	7631-86-9	Sigma-Aldrich
Titanium (IV) Butoxide	$C_{16}H_{40}O_{4}Ti$	5593-70-5	Sigma-Aldrich
Acetylacetone	$C_5H_8O_2$	123-54-6	Sigma-Aldrich
Polyvinylpyrrolidone	$(C_6H_9NO)_n$	9003-39-8	Sigma-Aldrich
Gadolinium (III) oxide	Gd_2O_3	12064-62-9	Sigma-Aldrich
Europium (III) oxide	Eu ₂ O ₃	1308-96-9	Sigma-Aldrich
Zinc acetate dihydrate	$C_4H_{10}O_6Zn$	5970-45-6	Merck
Silver nitrate	AgNO ₃	7761-88-8	Sigma-Aldrich

Çizelge 4.1. Çalışmada kullanılan kimyasallara ait teknik özellikler

4.1.2. Cam malzemeler

Çalışmada kullanılan FV panellerin yüzeyindeki camların kaplanması öncesinde, eşdeğer 15 adet cam numune "Çağdaş Cam A.Ş" firmasından tedarik edilmiştir. Daha sonra çalışma kapsamında hazırlanan çözeltilerin her biri ayrı ayrı eşdeğer cam yüzeylere kaplanmıştır. Tedarik edilen cam numunelerin özellikleri Çizelge 4.2'de görüldüğü gibidir.

	Çizelge 4.2.	Tedarik edilen	cam numunelerin	özellikleri
--	--------------	----------------	-----------------	-------------

Cam numune	Işık geçirgenliği (D65)	FV geçirgenliği	Güneş ışığı geçirgenliği (AM 1,5)T	SPF sınıfı
Sandy 3.2 mm	%91.8	%95.1	%91.2	P1

4.2. Çalışmada Kullanılan Çözeltiler

Çalışmada her grupta 3 adet olmak üzere toplam 15 farklı bileşimde çözelti aşağıdaki aşamalardan geçerek hazırlanmıştır. Çözeltiler hazırlanırken kimyasalların ölçümleri için hassas terazi, çözeltilerin homojen karışması için de manyetik karıştırıcı kullanılmıştır.

4.2.1. A grubu çözeltiler

Çözeltilerde kullanılan kimyasalların tanımlanması ve miktarları A grubu çözeltilerin hazırlık aşamalarında belirtilmiştir. A₁ çözeltisinin hazırlık aşamaları Şekil 4.1'de görülmektedir.

Şekil 4.1. A1 çözeltisinin hazırlık aşamaları

Şekil 4.1 de verilen TiO₂ esaslı A_1 çözeltisine ek olarak 0.05g Gadolinium (III) oxide eklenerek A_2 çözeltisi elde edilmiştir. A_2 çözeltisinin hazırlık aşamaları Şekil 4.2'te görülmektedir.

Şekil 4.2. A₂ çözeltisinin hazırlık aşamaları

0.05g Europium (III) oxide TiO₂ esaslı A₁ çözeltisine eklenerek A₃ çözeltisi elde edilmiştir. A₃ çözeltisinin hazırlık aşamaları Şekil 4.3'te görülmektedir.

4.2.2. B grubu çözeltiler

B1 çözeltisinin hazırlık aşamaları Şekil 4.4'te görülmektedir.

Şekil 4.4. B1 çözeltisinin hazırlık aşamaları

Şekil 4.4'te verilen TiO₂ ve Zn esaslı B_1 çözeltisine ek olarak 0.05g Gadolinium (III) oxide eklenerek B_2 çözeltisi elde edilmiştir. B_2 çözeltisinin hazırlık aşamaları Şekil 4.5'te görülmektedir.

Şekil 4.5. B2 çözeltisinin hazırlık aşamaları

0.05g Europium (III) oxide TiO₂ ve Zn esaslı B₁ çözeltisine eklenerek B₃ çözeltisi elde edilmiştir. A₃ çözeltisinin hazırlık aşamaları Şekil 4.6'da görülmektedir.

Şekil 4.6. B3 çözeltisinin hazırlık aşamaları

4.2.3. C grubu çözeltiler

C1 çözeltisinin hazırlık aşamaları Şekil 4.7'de görülmektedir.

Şekil 4.7. C1 çözeltisinin hazırlık aşamaları

Şekil 4.7'de verilen TiO₂ ve Ag esaslı C₁ çözeltisine ek olarak 0.05g Gadolinium (III) oxide eklenerek C₂ çözeltisi elde edilmiştir. C₂ çözeltisinin hazırlık aşamaları Şekil 4.8'de görülmektedir.

Şekil 4.8. C2 çözeltisinin hazırlık aşamaları

0.05g Europium (III) oxide TiO₂ ve Ag esaslı C₁ çözeltisine eklenerek C₃ çözeltisi elde edilmiştir. C₃ çözeltisinin hazırlık aşamaları Şekil 4.9'da görülmektedir.

4.2.4. D grubu çözeltiler

D1 çözeltisinin hazırlık aşamaları Şekil 4.10'da görülmektedir.

Şekil 4.10. D1 çözeltisinin hazırlık aşamaları

Şekil 4.10'da verilen TiO₂ esaslı D_1 çözeltisine ek olarak 0.05g Gadolinium (III) oxide eklenerek D_2 çözeltisi elde edilmiştir. D_2 çözeltisinin hazırlık aşamaları Şekil 4.11'de görülmektedir.

Şekil 4.11. D₂ çözeltisinin hazırlık aşamaları

0.05g Europium (III) oxide TiO₂ esaslı D₁ çözeltisine eklenerek D₃ çözeltisi elde edilmiştir. D₃ çözeltisinin hazırlık aşamaları Şekil 4.12'de görülmektedir.

Şekil 4.12. D3 çözeltisinin hazırlık aşamaları

4.2.5. E grubu çözeltiler

E1 çözeltisinin hazırlık aşamaları Şekil 4.13'te görülmektedir.

Şekil 4.13. E₁ çözeltisinin hazırlık aşamaları

Şekil 4.13'te verilen TiO₂, Zn ve Ag esaslı E_1 çözeltisine ek olarak 0.05g Gadolinium (III) oxide eklenerek E_2 çözeltisi elde edilmiştir. E_2 çözeltisinin hazırlık aşamaları Şekil 4.14'te görülmektedir.

Şekil 4.14. E2 çözeltisinin hazırlık aşamaları

0.05g Europium (III) oxide TiO₂, Zn ve Ag esaslı E₁ çözeltisine eklenerek E₃ çözeltisi elde edilmiştir. E₃ çözeltisinin hazırlık aşamaları Şekil 4.15'te görülmektedir.

Şekil 4.15. E3 çözeltisinin hazırlık aşamaları

4.3. Numune Camlarının Temizliği

15 adet numune camların temizliği için, Şekil 4.16'da görülen yıkama prosesi sırasıyla aşağıda verilen işlem sırasına göre uygulanmıştır.

Şekil 4.16. Cam Numune Yıkama Prosesi

Bu şekilde kaplanacak yüzeylerin temizliği ve yüzeye kaplanacak filmin tutuculuğunun arttırılması hedeflenmiştir.

4.4. Elektro-Eğirme Yöntemi ile Yüzey Üzerinde Nanolif Üretimi

Çalışmada FV paneller ve cam yüzeyler üzerinde nanolif kaplaması oluşturmak için laboratuvar tipi 0-30 kV arası DC voltaj uygulayabilen, toplayıcı plakaya sahip ev tipi elektro-eğirme cihazı kullanıldı.

Üretilen karışımlar ayrı ayrı şırıngalara yerleştirilerek 0.3-0.5 mL/h sabit akış hızında; 25 kV DC elektriksel gerilim altında ve şırıngada bulunan iğnenin ucu ile toplayıcı plaka arasında 8 cm mesafe olacak şekilde ayarlanmış olup 2 saat boyunca nanolif üretimi yapılmıştır.

4.5. Sol-Jel Yöntemi ile Kaplama İşlemi

FV paneller üzerinde nanolif kaplaması oluşturulduktan sonra kaplamanın su temasına karşı daha dayanıklı olabilmesi için sol-jel yöntemi film aplikatörü ile özel şeffaf bir karışım (AN₂) hazırlanmıştır.

İlk olarak kimyasallar cam beherin içerisine Çizelge 4.18 de belirtilen miktarlarda eklenmiştir. Ardından çözelti, manyetik karıştırıcıda 1 saat karıştırılıp kaplamak için hazır hale getirilmiştir. Hazırlanan karışım film aplikatörü ile tüm FV panel yüzeyler üzerine çekilmiştir. AN₂ karışımı ile ilgili bilgiler Çizelge 4.3'te gösterilmiştir.

AN ₂	
Kullanılan Malzemeler	Miktar
Diamo	2.5 mL
(3-Aminopropyl)triethoxysilane	2.5 mL
İsopropyl alcohol	45 mL

Çizelge 4.3. AN_2 l	karışımı ile	e ilgili	bilgil	er
-----------------------	--------------	----------	--------	----

4.6. Kaplanan Yüzeylerin Isıl İşlem Prosesi

Elektro-eğirme cihazı ile elde edilen nanoliflerin FV panel ve cam yüzeylere bağlanmasını arttırmak için önceden 70°C sıcaklıkta ısıtılmış etüvde sabit sıcaklıkta 2 saat ısıl işleme tabi tutulmuştur. Bu ısıl işlemin ardından nanolif kaplamalı cam yüzeylere saydam karışım film aplikatörü ile çekilmiştir. Kaplamanın, yüzeye daha

iyi tutunması ve film tabakasının oluşması için önceden 70°C sıcaklıkta ısıtılmış etüvde sabit sıcaklıkta 1 saat daha ısıl işleme tabi tutularak bu proses son bulmuştur.

4.7. FV Panel Düzeneğinin Kurulması

Çalışmada kullanılacak olan FV panel düzeneği bileşenleri; 4'lü gruplar halinde toplam 16 adet 10W polikristal FV panel, FV düzeneğin elektronik sistemi panosu, FV paneller için platform, veri kayıt cihazı bölümlerinden oluşmaktadır. FV panel düzeneği Şekil 4.17'de görüldüğü gibidir.

Şekil 4.17. FV panel düzeneği

4.7.1. Çalışmada kullanılan polikristal FV paneller

Çalışmada kullanılmak üzere kaplanan ve kaplanmayan tüm FV panellerin iç kayıplarının aynı olması için aynı marka ve model 10W FV panel kullanılmıştır.

4.7.2. FV düzeneğin elektronik sistem panosu

Elektronik sistem, otomatik olarak devreye alınıp FV panellerin amper, gerilim ve güç değerlerinin ölçümleri otomatik olarak yaparak veri kayıt cihazına bilgileri aktarmaktadır. Ayrıca bu elektronik sistem, FV panellerin yüksüz boştaki gerilimi ve kısa devre altındaki akımı otomatik olarak ölçüm yapabilecek özelliğe de sahiptir.

4.7.3. Veri kayıt cihazı

Veri kayıt cihazı, 4 ayrı FV panelin yüksüz, kısa devre altında, ½ yük altında ve tam yükte alınan verileri kaydedebilecek özelliktedir. Alınan veriler için kayıt alanı, günlük 2 saatlik periyotlarla 4 ayrı panelin; akım, gerilim ve güç değerlerini kaydedebilmektedir. Kaydedilen veriler PC'ye aktarılabilecek ara yüze sahiptir.

4.8. Numunelerin Karakterizasyonu

Her çözelti ayrı ayrı FV panel yüzeyleri ile eşdeğer cam yüzeylere sırasıyla elektroeğirme yöntemiyle kaplanmıştır. FV panellerde bulunan cam yüzeyler ile eşdeğer olan cam yüzeyler üzerinde 15 farklı çözelti ile elde edilen kaplamaların optik, morfolojik, kimyasal ve fiziksel özellikleri karakterize edilmiştir. Karakterizasyon işlemleri aşağıdaki işlemleri kapsamaktadır.

4.8.1. SEM/EDS analizi

Yapılan bu tez çalışmasında kaplanan yüzeylerde bulunan nanoliflerin morfolojik analizleri için "FEİ QUANTA FEG 250/EDAX" marka ve model SEM/EDS cihazı kullanılmıştır. Sistem "Low vacuum" moduna getirilmiştir. Cihazın kabin basıncı 60 pascal olarak ayarlanmış olup, çalışma aralığı 10 mm olarak belirlenmiştir. Her bir numune için aynı büyütme oranları belirlenmiştir.

4.8.2. UV-VIS Spektrofotometre ile optiksel özelliklerin incelenmesi

Kaplamaların geçirgenlik, soğurma ve yansıma ölçümleri, çift ışın yollu Jasco-V-770 UV-VIS-NIR spektrofotometre cihazı kullanılarak 190-1100 nm dalga boyu aralığında alınarak elde edilmiştir.

4.8.3. Mikrodilüsyon yöntemi ile antibakteriyel aktivitenin tayini

Çalışmada, numunelerin antibakteriyel aktivite tayini, *Escherichia coli* ATCC 25922 ve *Staphylococcus aureus* ATCC 25923 bakteri suşları ile yapılmıştır. Nutrient Agar (NA, MERCK No: 1.05450) ve Nutrient Broth (NB, MERCK No: 1.05443),

besiyerleri test edilecek antimikrobiyal maddelerin farklı konsantrasyonlarının ayarlanmasında kullanılmıştır.

Hazırlanan çözeltilerin antibakteriyel aktivitelerinin araştırılmasında dilüsyon metodundan olan "Broth Mikrodilüsyon" yöntemi kullanılmıştır. Bu yöntemde 96 kuyucuklu plakalar (96 well plate) ile deneyler yapılarak *S.aureus* ATCC 25923 ve *E.coli* ATCC 25922 bakterilerine karşı her bir çözeltinin MİK değeri belirlenmiştir.

Sentezlenen bileşik çözeltileri besiyerler ile seyreltildikten sonra hazırlanan stok çözeltilerin, her bakteri için hazırlanan kuyucuklara 1/2, 1/4, 1/8 ve 1/16 oranında Nutrient Broth besiyeri ile ikişer kat seri dilüsyonları hazırlanmıştır. Bakteri süspansiyonları ilgili kuyucuklara son konsantrasyonları 0.5 McFarland olacak şekilde 10 µl ilave edilmiştir. Pozitif kontrol olarak 250 µl NB ve bakteri kültürü karışımı kullanılmıştır. Negatif kontrol olarak çalışılan her konsantrasyon (bakteri içermeyen) kullanılmıştır. Çalışma her mikroorganizma ve her çözelti için 3 paralel halinde gerçekleştirilmiştir. Plakalar 37°C'de 24 saat inkübe edilmiştir. Bakterilerin optik yoğunluğu 600 nm'de mikro plaka okuyucu ile okutularak absorbans değerleri (OD) belirlenmiş ve her bir numunenin MİK değerleri elde edilmiştir.

MBK değerlerinin belirlenmesi amacıyla NA besiyeri içeren petri kaplarına, bakteri gelişimi olmayan mikroplaka kuyucuklarından 10 µl alınarak ekim yapılmış ve 37°C'de 24 saat inkübasyona bırakılmıştır. İnkübasyon sonunda bakteri gelişiminin olmadığı petri kaplarındaki en düşük çözelti konsantrasyonu MBK değeri olarak belirlenmiştir.

4.8.4. FT-IR spektroskopisi analizi

FT-IR spektroskopisi analizinde hazırlanan A₁ temel çözeltisinden 20 μ L numune alınarak damla halinde ATR aksesuarı üzerine konulmuş ve FT-IR spektroskopisi cihazı yardımıyla 4000–400 cm⁻¹ aralığında 0,5 cm⁻¹ rezolüsyon ile taramalar yapılmıştır. Ayrıca ATR plakası, işlem öncesi %80 yoğunluktaki etanol çözeltisi ile temizlenmiştir. Temizleme işleminden sonra ve örnek ölçümden önce, boş bir ölçüm (hava ve cihazdan kaynaklanan arka plan) alınmıştır. Arka plan ölçümü alındıktan sonra numuneler doğrudan ATR kristali üzerindeki örnek okuma hücresine yerleştirilip, uygun aparat ile sıkıştırılarak analizler yapılmıştır.

Analiz için "PerkinElmer Spectrum Two" marka FT-IR cihazı kullanılmıştır. Ayrıca "Spectrum 10" arayüzü ile de FTIR sonucundan elde edilen spektrum analiz edilmiştir.

4.8.5. Temas açısı ölçümü

Bu çalışmada da farklı çözeltiler ile kaplanan cam numunelerin her birinin yüzeyinde sıvı damlacığının davranışını tespit edebilmek için pendant damla yöntemine dayalı çalışan "Attention ThetaLite" marka yüzey temas açısı ölçüm cihazı kullanılmıştır.

4.9. FV Panel Verimliliği

Bu çalışma kapsamında FV sistem düzeneği ile kaplama yapılmayan 1 adet referans FV panel ile kaplaması yapılan tüm A. B, C, D ve E grubu FV panellerin; tam yük altındaki I_{max}, V_{max} ve P_{max} değerleri her grup için, saatlik periyotlarla kesintisiz olarak belirlenen periyotlar boyunca sırasıyla ölçülmüştür. Her grupta 1 adet kaplanmayan referans FV panel ve 3 adet farklı çözeltiler ile kaplanan toplam 4 adet FV panel bulunmaktadır. Her grupta bulunan 4 adet FV panelin veri kayıt cihazına aktarılan teknik ölçümlerinin istatistiksel değerlendirilmesi yapılmış ve bu değerlendirmeler neticesinde grup içerisinde bulunan en iyi enerji verim oranına sahip olan FV panel belirlenmiştir. Tüm FV sistemin kurulumu, Afyon Kocatepe Üniversitesi Mühendislik Fakültesi biriminde bulunan açık deney alanında gerçekleştirilmiştir.

5. ARAŞTIRMA BULGULARI VE TARTIŞMA

Çalışmanın bu aşamasında materyal ve metotta bahsedilen aşamalar takip edilerek FV panellerin enerji verimlilik oranları ve eşdeğer cam yüzeylerin tüm karakterizasyon sonuçları karşılaştırılarak incelenmiştir.

5.1. Elektro-Eğirme Yöntemi ile Numune Camlarına Yapılan Silan Bazlı Nanolif Kaplamaların Karakterizasyon Sonuçları

Çalışmanın bu adımında, nano boyutlarda yüzeyin morfolojik yapısını ve üzerinde belirlenen bir alanda bulunan elementlerin dağılım haritalarını çıkararak karışım içeriğinin kaplama üzerindeki varlığı incelemek için SEM-EDS analizi, kaplanan her bir cam numune yüzeyinde sıvı damlacığının davranışını tespit edebilmek için yüzey temas açısı ölçümü, FT-IR spektroskopisi cihazı ile temel çözeltinin spektrum analizi, UV-VIS spektrofotometre cihazı ile kaplanan eşdeğer cam numunelerin geçirgenlik, yansıma ve soğurma analizleri, hazırlanan çözeltilerin gram pozitif *S. aureus* ve negatif *E. coli* bakterilerine karşı broth mikrodilusyon yöntemi kullanılarak antibakteriyel aktivitesinin incelenmesi aşamaları uygulanmıştır.

5.1.1. Kaplanan numune cam yüzeylerinin SEM-EDS sonuçları

Tüm nanolifler elektro-eğirme yöntemi ile aynı deneysel koşullarda elde edilmiştir. Elektro-eğirme yöntemiyle elde edilen nanoliflerin, morfolojik yapısı ile ilgili bilgi sahibi olmak ve elementel dağılımlarını inceleyerek elementlerin kaplamadaki varlığını tespit etmek için SEM-EDS analizleri yapılmıştır.

Cam altlığın içeriğinde sodyum (Na), Al, magnezyum (Mg) ve kalsiyum (Ca) elementleri bulunmaktadır. Bu nedenle karışımların içeriğine ek olarak EDS analizinde bu elementlere de farklı atomik oranlarda rastlanmıştır. Analizlerin sonuçları aşağıdaki başlıklar altında görülmektedir.

5.1.1.1. A grubu numunelerin SEM-EDS sonuçları

Şekil 5.1.'de A Grubu numunelerin SEM görüntüleri görülmektedir.

Şekil 5.1. A grubu numunelerin SEM görüntüleri a) A1, b) A2, c) A3

Şekil 5.2, 5.3 ve 5.4'te sırasıyla A_1 , A_2 ve A_3 grubu numunelerin SEM görüntüleri sonucunda elde edilen ortalama nanolif çap değerleri görülmektedir.

Şekil 5.2. A1 numunesinin ortalama nanolif çap değerleri

Şekil 5.3. A2 numunesinin ortalama nanolif çap değerleri

Şekil 5.4. A3 numunesinin ortalama nanolif çap değerleri

A grubu nanolif kaplamalı yüzeylerin morfolojik yapısını incelediğimizde nanolif oluşumlarının homojen dağıldığı görülmektedir. TiO₂ esaslı A₁ numune yüzeyinde bulunan nanoliflerin ortalama çapı 123 nm, TiO₂ esaslı Gd katkılandırılmış A₂ numune yüzeyinde bulunan nanoliflerin ortalama çapı 193 nm ve TiO₂ esaslı Eu katkılandırılmış A₃ numune yüzeyinde bulunan nanoliflerin ortalama çapı 193 nm ve TiO₂ esaslı Eu numune yüzeyinde bulunan nanoliflerin ortalama çapı 193 nm ve TiO₂ esaslı Eu katkılandırılmış A₃ numune yüzeyinde bulunan nanoliflerin ortalama çapının ise 171 nm olduğu görülmektedir. Bu sonuçlara göre Gd ve Eu katkılarının ortalama nanolif çaplarında belirgin bir artışa neden olduğu görülmektedir.

 A_1 , A_2 ve A_3 çözeltileri kullanılarak elde edilen nanoliflerin içeriğinde yer alan elementlerin dağılımını ve varlığını tespit etmek için EDS analizleri gerçekleştirilmiştir. Şekil 5.5'te de görüldüğü üzere A_1 çözeltisinden elde edilen nanolif kaplamanın EDS sonuçları incelendiğinde içeriğindeki bulunan elementlerin atomik oranları, %56.56 C, %25.91 O, %0.22 Ti ve %12.84 Si bulunmuştur. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır.

Şekil 5.5. A1 numunesinin EDS sonuçları

Şekil 5.6'da görüldüğü üzere A₂ çözeltisinden elde edilen nanolif kaplamanın EDS sonuçları incelendiğinde içeriğindeki bulunan elementlerin atomik oranları, %30.39 C, %42.25 O, %16.88 Si, %0.17 Ti ve Gd %0.01 bulunmuştur. Gd katkısının eser miktarda olmasından dolayı elementel dağılım haritasında da eser miktarda görülmektedir. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır.

Şekil 5.6. A2 numunesinin EDS sonuçları

Şekil 5.7'de de görüldüğü üzere A₃ çözeltisinden elde edilen nanolif kaplamanın EDS sonuçları incelendiğinde içeriğindeki bulunan elementlerin atomik oranları, %44.80 C, %31.75 O, %15.08 Si, %0.05 Ti ve Eu %0.02 bulunmuştur. Eu katkısının eser miktarda olmasından dolayı elementel dağılım haritasında da eser miktarda görülmektedir. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır.

Şekil 5.7. A3 numunesinin EDS sonuçları

5.1.1.2. B grubu numunelerin SEM-EDS sonuçları

Şekil 5.8'te B Grubu numunelerin SEM görüntüleri görülmektedir.

Şekil 5.8. B Grubu Numunelerin SEM Görüntüleri a) B1, b) B2, c) B3

Şekil 5.9, 5.10 ve 5.11'de sırasıyla B_1 , B_2 ve B_3 grubu numunelerin SEM görüntüleri sonucunda elde edilen ortalama nanolif çap değerleri görülmektedir.

Şekil 5.9. B1 numunesinin ortalama nanolif çap değerleri

Şekil 5.10. B2 numunesinin ortalama nanolif çap değerleri

Şekil 5.11. B3 numunesinin ortalama nanolif çap değerleri

B grubu nanolif kaplamalı yüzeylerin morfolojik yapısını incelediğimizde, B_2 numunesi yüzeyinin daha buruşuk ve pürüzlü olduğu görülmektedir. B_1 ve B_3 numune yüzeylerinde B_2 numune yüzeyine nazaran daha pürüzsüz bir oluşum görülmektedir. TiO₂ ve Zn esaslı B₁ numune yüzeyinde bulunan nanoliflerin ortalama çapı 328 nm, TiO₂ ve Zn esaslı Gd katkılandırılmış B₂ numune yüzeyinde bulunan nanoliflerin ortalama çapı 226 nm ve TiO₂ ve Zn esaslı Eu katkılandırılmış B₃ numune yüzeyinde bulunan nanoliflerin ortalama çapının ise 376 nm olduğu görülmektedir. Bu sonuçlara göre, Zn ve Gd katkılarının birlikte katkılanmasının ortalama nanolif çapında belirgin bir düşüşe, Zn ve Eu katkılarının birlikte katkılanmasının ortalama nanolif çapında belirgin bir artışa neden olduğu görülmektedir.

 B_1 , B_2 ve B_3 çözeltileri kullanılarak elde edilen nanoliflerin içeriğinde yer alan elementlerin dağılımını ve varlığını tespit etmek için EDS analizleri gerçekleştirilmiştir. Şekil 5.12'de görüldüğü üzere B_1 çözeltisinden elde edilen nanolif kaplamanın EDS sonucu incelendiğinde içeriğinde bulunan elementlerin atomik oranları, %52.10 C, %27.84 O, %0.16 Ti %12.84 Si ve %0.03 Zn bulunmuştur. Zn katkısının eser miktarda olmasından dolayı elementel dağılım haritasında da eser miktarda görülmektedir. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır.

Şekil 5.12. B1 numunesinin EDS sonuçları

Şekil 5.13'te görüldüğü üzere B_2 çözeltisinden elde edilen nanolif kaplamanın EDS sonucu incelendiğinde içeriğinde bulunan elementlerin atomik oranları, %49.17 C,

%30.21 O, %0.22 Ti %13.43 Si, %0.08 Zn ve %0.05 Gd bulunmuştur. Zn ve Gd katkısının eser miktarda olmasından dolayı elementel dağılım haritasında da eser miktarda oldukları görülmektedir. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır.

Şekil 5.13. B2 numunesinin EDS sonuçları

Şekil 5.14'te görüldüğü üzere B₃ çözeltisinden elde edilen nanolif kaplamanın EDS sonucu incelendiğinde içeriğinde bulunan elementlerin atomik oranları, %47.79 C, %31.80 O, %0.15 Ti %13.66 Si, %0.06 Zn ve %0.04 Eu bulunmuştur. Zn ve Eu katkısının eser miktarda olmasından dolayı elementel dağılım haritasında da eser miktarda oldukları görülmektedir. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır.

Şekil 5.14. B3 numunesinin EDS sonuçları

5.1.1.3. C grubu numunelerin SEM-EDS sonuçları

Şekil 5.15'te C Grubu numunelerin SEM görüntüleri görülmektedir.

Şekil 5.15. C grubu numunelerin SEM görüntüleri a) C1, b) C2, c) C3

Şekil 5.16, 5.17 ve 5.18'de sırasıyla C_1 , C_2 ve C_3 grubu numunelerin SEM görüntüleri sonucunda elde edilen ortalama nanolif çap değerleri görülmektedir.

Şekil 5.16. C1 numunesinin ortalama nanolif çap değerleri

Şekil 5.17. C2 numunesinin ortalama nanolif çap değerleri

Şekil 5.18. C3 numunesinin ortalama nanolif çap değerleri

C grubu nanolif kaplamalı yüzeylerin morfolojik yapısını incelediğimizde, C_3 numunesi yüzeyine nazaran C_1 ve C_2 numune yüzeylerinin daha pürüzsüz olduğu
görülmektedir. TiO₂ ve Ag esaslı C₁ numune yüzeyinde bulunan nanoliflerin ortalama çapı 305 nm, TiO₂ ve Ag esaslı Gd katkılandırılmış C₂ numune yüzeyinde bulunan nanoliflerin ortalama çapı 278 nm ve TiO₂ ve Ag esaslı Eu katkılandırılmış C₃ numune yüzeyinde bulunan nanoliflerin ortalama çapının ise 443 nm olduğu görülmektedir. Bu sonuçlara göre, Ag ve Eu katkılarının birlikte katkılanması ile ortalama nanolif çapında belirgin bir yükseliş görüldüğü fakat bu katkıların birlikte bulunduğu C₃ numunesi yüzeyinde bulunan nanoliflerin homojen dağılmadığı tespit edilmiştir.

 C_1 , C_2 ve C_3 çözeltileri kullanılarak elde edilen nanoliflerin içeriğinde yer alan elementlerin dağılımını ve varlığını tespit etmek için EDS analizleri gerçekleştirilmiştir. Şekil 5.19'da da görüldüğü üzere C_1 çözeltisinden elde edilen nanolif kaplamanın EDS sonuçları incelendiğinde içeriğindeki bulunan elementlerin atomik oranları, %37.45 C, %36.73 O, %0.04 Ti, %15.97 Si ve %0.02 Ag bulunmuştur. Ag katkısının eser miktarda olmasından dolayı elementel dağılım haritasında da eser miktarda görülmektedir. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır.

4.1.42		Si									
4.14K											
3.68K											
3.22K											
2.76K											
2.30K											
1.84K	Mg Ag										
1.38K	O Mg										
0.92K	Ti Na										
0.46K	Ca Na /	Si	Ag Ca								
0.00K	Ça (A	Ag Ca	Ti Ti							
0	.0	1.7	3.4	5.1	6.8	8.5	10.2	11.9	13.6	15.3	17

Şekil 5.19. C1 numunesinin EDS sonuçları

Şekil 5.20'de de görüldüğü üzere C₂ çözeltisinden elde edilen nanolif kaplamanın EDS sonuçları incelendiğinde içeriğindeki bulunan elementlerin atomik oranları, %44.25 C, %33.72 O, %0.15 Ti, %13.88 Si, %0.02 Ag ve %0.05 Gd bulunmuştur.

Ag ve Gd katkısının eser miktarda olmasından dolayı elementel dağılım haritasında da eser miktarda görülmektedir. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır.

Şekil 5.20. C2 numunesinin EDS sonuçları

Şekil 5.21'de de görüldüğü üzere C₃ çözeltisinden elde edilen nanolif kaplamanın EDS sonuçları incelendiğinde içeriğindeki bulunan elementlerin atomik oranları, %44.86 C, %32.12 O, %0.04 Ti, %14.93 Si, %0.01 Ag ve %0.02 Eu bulunmuştur. Ag ve Eu katkısının eser miktarda olmasından dolayı elementel dağılım haritasında da eser miktarda görülmektedir. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır.

Şekil 5.21. C3 numunesinin EDS sonuçları

5.1.1.4. D grubu numunelerin SEM-EDS sonuçları

Şekil 5.22'de D Grubu numunelerin SEM görüntüleri görülmektedir.

Şekil 5.22. D Grubu Numunelerin SEM Görüntüleri a) D1, b) D2, c) D3

Şekil 5.23, 5.24 ve 5.25'te sırasıyla D_1 , D_2 ve D_3 grubu numunelerin SEM görüntüleri sonucunda elde edilen ortalama nanolif çap değerleri görülmektedir.

Şekil 5.23. D1 numunesinin ortalama nanolif çap değerleri

Şekil 5.24. D2 numunesinin ortalama nanolif çap değerleri

Şekil 5.25. D3 numunesinin ortalama nanolif çap değerleri

D grubu nanolif kaplamalı yüzeylerin morfolojik yapısını incelediğimizde, tüm numune yüzeylerinde bulunan nanoliflerin kırık bir yapıda olmadığı görülmektedir. TiO₂ esaslı D₁ numune yüzeyinde bulunan nanoliflerin ortalama çapı 165 nm, TiO₂ esaslı Gd katkılandırılmış D₂ numune yüzeyinde bulunan nanoliflerin ortalama çapı 177 nm ve TiO₂ esaslı Eu katkılandırılmış D₃ numune yüzeyinde bulunan nanoliflerin ortalama çapının ise 268 nm olduğu görülmektedir. Bu sonuçlara göre özellikle Eu katkısının ortalama nanolif çapında belirgin bir artışa neden olduğu görülmektedir.

 D_1 , D_2 ve D_3 çözeltileri kullanılarak elde edilen nanoliflerin içeriğinde yer alan elementlerin dağılımını ve varlığını tespit etmek için EDS analizleri gerçekleştirilmiştir. Şekil 5.26'da görüldüğü üzere D_1 çözeltisinden elde edilen nanolif kaplamanın EDS sonuçları incelendiğinde içeriğindeki bulunan elementlerin atomik oranları, %50.71 C, %28.54 O, %0.17 Ti ve %13.89 Si olarak görülmektedir. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır.

Şekil 5.26. D1 numunesinin EDS sonuçları

Şekil 5.27'de görüldüğü üzere D₂ çözeltisinden elde edilen nanolif kaplamanın EDS sonuçları incelendiğinde içeriğinde bulunan elementlerin atomik oranları, %57.60 C, %29.98 O, %0.17 Ti, %8.69 Si ve %0.03 Gd olarak görülmektedir. Gd katkısının eser miktarda olmasından dolayı elementel dağılım haritasında da eser miktarda görülmektedir. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır.

Şekil 5.27. D2 numunesinin EDS sonuçları

Şekil 5.28'de görüldüğü üzere D_3 çözeltisinden elde edilen nanolif kaplamanın EDS sonuçları incelendiğinde içeriğindeki bulunan elementlerin atomik oranları, %54.50 C, %26.40 O, %0.34 Ti, %13.02 Si ve %0.06 Eu olarak görülmektedir. Eu katkısının eser miktarda olmasından dolayı elementel dağılım haritasında da eser miktarda görülmektedir. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır.

Şekil 5.28. D3 numunesinin EDS sonuçları

5.1.1.5. E grubu numunelerin SEM-EDS sonuçları

Şekil 5.29'da E Grubu numunelerin SEM görüntüleri görülmektedir.

Şekil 5.29. E grubu numunelerin SEM görüntüleri a) E1, b) E2, c) E3

Şekil 5.30, 5.31 ve 5.32'de sırasıyla E_1 , E_2 ve E_3 grubu numunelerin SEM görüntüleri sonucunda elde edilen ortalama nanolif çap değerleri görülmektedir. E_1 , E_2 ve E_3 çözeltileri kullanılarak elde edilen nanoliflerin içeriğinde yer alan elementlerin dağılımını ve varlığını tespit etmek için EDS analizleri gerçekleştirilmiştir.

Şekil 5.30. E1 numunesinin ortalama nanolif çap değerleri

Şekil 5.31. E2 numunesinin ortalama nanolif çap değerleri

Şekil 5.32. E3 numunesinin ortalama nanolif çap değerleri

E grubu nanolif kaplamalı yüzeylerin morfolojik yapısını incelediğimizde, numune yüzeylerinde bulunan nanoliflerde kırık bir yapının görülmediği ancak nanolif dağılımlarının homojen olmadığı görülmektedir. TiO₂ esaslı Zn ve Ag katkılı E₁ numune yüzeyinde bulunan nanoliflerin ortalama çapı 263 nm, TiO₂ esaslı Ag, Zn ve Gd katkılandırılmış E₂ numune yüzeyinde bulunan nanoliflerin ortalama çapı 211 nm ve TiO₂ esaslı Ag, Zn ve Eu katkılandırılmış E₃ numune yüzeyinde bulunan nanoliflerin ortalama çapı görülmektedir. Bu sonuçlara göre özellikle Ag, Zn ve Gd kimyasallarının birlikte katkılandırıldığı E₂ numunesinde ortalama nanolif çapının diğer numunelere göre daha düşük olduğu görülmektedir.

Şekil 5.33'te görüldüğü üzere E₁ çözeltisinden elde edilen nanolif kaplamanın EDS sonuçları incelendiğinde içeriğindeki bulunan elementlerin atomik oranları, %50.52 C, %32.78 O, %0.19 Ti, %10.68 Si, %0.04 Ag ve %0.03 Zn olarak görülmektedir. Ag ve Zn katkısının eser miktarda olmasından dolayı elementel dağılım haritasında da eser miktarda görülmektedir. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır.

Şekil 5.33. E1 numunesinin EDS sonuçları

Şekil 5.34'te görüldüğü üzere E_2 çözeltisinden elde edilen nanolif kaplamanın EDS sonuçları incelendiğinde içeriğindeki bulunan elementlerin atomik oranları, %55.51 C, %30.39 O, %0.11 Ti, %9.79 Si, %0.01 Ag, %0.01 Zn ve %0.01 Gd olarak görülmektedir. Ag, Zn ve Gd katkısının eser miktarda olmasından dolayı elementel dağılım haritasında da eser miktarda görülmektedir. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır.

Şekil 5.34. E2 numunesinin EDS sonuçları

Şekil 5.32'de görüldüğü üzere E_3 çözeltisinden elde edilen nanolif kaplamanın EDS sonuçları incelendiğinde içeriğindeki bulunan elementlerin atomik oranlari, %51.52 C, %27.85 O, %0.17 Ti, %13.78 Si, %0.01 Ag, %0.02 Zn ve %0.02 Eu olarak görülmektedir. Ag, Zn ve Eu katkısının eser miktarda olmasından dolayı elementel dağılım haritasında da eser miktarda görülmektedir. Bu sonuçlar çözeltinin içeriğini doğrulamaktadır.

Şekil 5.35. E3 numunesinin EDS sonuçları

5.1.2. Hazırlanan çözeltilerin antibakteriyel aktivite test bulguları

Hazırlanan çözeltilerin antibakteriyel aktiviteleri mikrodilüsyon yöntemi ile *S.aureus* ATCC 25923, *E.coli* ATCC25922 suşlarına karşı test edilmiştir. Broth mikrodilüsyon yöntemi ile numunelerin *E.coli* ve *S.aureus* bakterilerine karşı 96 kuyucuklu plakalarda antibakteriyel seyreltme testi yapılmıştır. Çözeltilerin *E.coli* ve

S.aureus bakterilerine karşı antibakteriyel seyreltme testi Şekil 5.36'da gösterilmektedir.

Şekil 5.36. Çözeltilerin E. coli ve S.aureus bakterilerine karşı antibakteriyel seyreltme testi sonuçları

Hazırlanan çözeltilerin *E. coli* ATCC 25922 bakterisine karşı ise farklı antibakteriyel aktivite oranları tespit edilmiştir. Çizelge 5.1'de çözeltilerin *E.coli* bakterisine karşı MİK ve MBK değerleri görülmektedir.

Numune Adı	Мік	MBK	MBK/MİK
A ₁	1/16	1/8	2
A ₂	1/16	1/8	2
A ₃	1/8	1/4	2
B ₁	1/4	1/2	2
B ₂	1/8	1/4	2
B ₃	1/8	1/4	2
C ₁	1/8	1/4	2
C ₂	1/16	1/8	2
C ₃	1/16	1/8	2
D ₁	1/8	1/4	2
D ₂	1/16	1/8	2
D ₃	1/16	1/8	2
E ₁	1/8	1/4	2
E ₂	1/16	1/8	2
E ₃	1/16	1/8	2

Çizelge 5.1. Çözeltilerin E. coli bakterisine karşı MİK ve MBK değerleri

E. coli gelişiminin kuyucuklardaki çözelti konsantrasyonu azaldıkça arttığı belirlenmiştir. A₁, A₂, C₂, C₃, D₂, D₃, E₂ ve E₃ çözeltilerinin *E. coli* ATCC 25922 bakterisine karşı MİK değerleri 1/16 ve MBK değerleri 1/8 olarak belirlenmiş olup diğer çözeltilerden daha etkin oldukları sonucuna varılmıştır. Yani A₁, A₂, C₂, C₃, D₂, D₃, E₂ ve E₃ çözeltilerinin çok düşük konsantrasyonları bile bakterinin gelişimini tamamen engelleyebilmiştir. MİK değeri 1/4 ve MBK değeri 1/2 olan ve antibakteriyel etkinliği en düşük olan çözelti ise B₁ olarak belirlenmiştir. *S. aureus* ATCC 25923 suşu, çalışmada kullanılan çözeltilerin çalışılan konsantrasyonlarında besiyeri içeren kuyucuklarda gelişimine devam ettiği için *S. aureus* ATCC 25923'un *E. coli* ATCC 25922'ye göre bu çözeltilere daha dirençli olduğu tespit edilmiştir. Hazırlanan çözeltilerin *E. coli* ATCC 25922 bakterisine karşı MBK/MİK oranlarının ise 2 olduğu tespit edilmiştir. MBK/MİK oranı \leq 4 olduğu için çözeltilerin *E. coli* ATCC 25922 için bakterisidal oldukları söylenebilir (Wald-Dickler vd., 2018).

5.1.3. Kaplanan numune cam yüzeylerinin temas açısı ölçüm sonuçları

Çalışmanın bu kısmında, elektro-eğirme ve sol-jel metodu ile hazırlanan nanolif kaplamalı yüzeylerin yüzey temas açısı ölçüm cihazı ile eşdeğer cam altlıklar üzerindeki hidrofobik/hidrofilik etkileri incelenmiştir.

A grubu numunelerin kodları ve temas açısı ölçüm sonuçları aşağıdaki Şekil 5.37'de görüldüğü gibidir.

Şekil 5.37. A grubu temas açısı ölçüm sonuçları a-) A1, b-) A2, c-) A3

Sırasıyla A₁, A₂ ve A₃ adlı çözeltiler kullanarak kaplanan nanolif yüzeylerde su damlasının oluşturduğu temas açıları sırasıyla Şekil 5.37'de gösterildiği gibi 47.1°, 110.34° ve 102.20° olarak ölçülmüştür. Burada 15 adet çözeltide temel olarak kullanılan A₁ çözeltisinin yüzeyde hidrofilik bir etki bıraktığı görülmektedir. Ayrıca A₁ çözeltisi üzerine katkılanan Gd ve Eu kimyasallarının benzer açılarda hidrofobik bir yüzey oluşturduğu görülmektedir. B grubu numunelerin kodları ve temas açısı ölçüm sonuçları aşağıdaki Şekil 5.38'de görüldüğü gibidir.

Şekil 5.38. B grubu temas açısı ölçümü sonuçları a-) B1, b-) B2, c-) B3

Sırasıyla B₁, B₂ ve B₃ adlı çözeltiler kullanarak kaplanan nanolif yüzeylerde su damlasının oluşturduğu temas açıları sırasıyla Şekil 5.38'de görüldüğü gibi 90.75°, 71.60° ve 39.96° olarak ölçülmüştür. A₁ temel çözeltisine Zn katkılanarak elde edilen B₁ çözeltisinin A₁ çözeltisine göre daha hidrofobik bir yüzey oluşturduğu görülmüştür. Ayrıca B₁ çözeltisi üzerine katkılanan Gd ve Eu kimyasallarının B₁ çözeltisi ile kaplanan yüzeye göre daha hidrofilik bir yüzey oluşturduğu görülmektedir. C grubu numunelerin kodları ve temas açısı ölçüm sonuçları aşağıdaki Şekil 5.39'da görüldüğü gibidir.

Şekil 5.39. C grubu temas açısı ölçümü sonuçları a-) C1, b-) C2, c-) C3

Sırasıyla C₁, C₂ ve C₃ adlı çözeltiler kullanarak kaplanan nanolif yüzeylerde su damlasının oluşturduğu temas açıları sırasıyla Şekil 5.39'da görüldüğü gibi 69.79°, 89.05° ve 52.73° olarak ölçülmüştür. A₁ temel çözeltisine Ag katkılanarak elde edilen C₁ çözeltisinin A₁ çözeltisine göre daha hidrofobik bir yüzey oluşturduğu görülmüştür. Gd katkılı C₂ çözeltisi ile kaplanan yüzeyin C₁ çözeltisi ile kaplanan yüzeye göre daha hidrofobik bir yüzey oluşturmuştur. Ayrıca Eu ile katkılanan C₃ çözeltisi ile kaplanan yüzeyin C₁ çözeltisi ile kaplanan yüzeye göre daha hidrofilik bir yüzey oluşturmuştur. D grubu numunelerin kodları ve temas açısı ölçüm sonuçları aşağıdaki Şekil 5.40'ta görüldüğü gibidir.

Şekil 5.40. D grubu temas açısı ölçümü sonuçları a-) D1, b-) D2, c-) D3

Sırasıyla D₁, D₂ ve D₃ adlı çözeltiler kullanarak kaplanan nanolif yüzeylerde su damlasının oluşturduğu temas açıları sırasıyla Şekil 5.41'de görüldüğü gibi 66.20°, 82.48° ve 80.20° olarak ölçülmüştür. A₁ temel çözeltisine 1.42 gr daha TiO₂ katkılanarak elde edilen D₁ çözeltisinin A₁ çözeltisine göre daha hidrofobik bir yüzey oluşturduğu görülmüştür. Gd katkılı D₂ çözeltisi ile kaplanan yüzeyin D₁ çözeltisi ile kaplanan yüzeye göre daha hidrofobik bir yüzey oluşturduğu görülmektedir. Ayrıca Eu ile katkılanan D₃ çözeltisi ile kaplanan yüzeyin D₁ çözeltisi ile kaplanan yüzeye göre daha hidrofobik bir yüzey oluşturmuştur. E grubu numunelerin kodları ve temas açısı ölçüm sonuçları aşağıdaki Şekil 5.41'de görüldüğü gibidir.

Şekil 5.41. E grubu temas açısı ölçümü sonuçları a-) E1, b-) E2, c-) E3

Sırasıyla E_1 , E_2 ve E_3 adlı çözeltiler kullanarak kaplanan nanolif yüzeylerde su damlasının oluşturduğu temas açıları sırasıyla Şekil 5.41'de görüldüğü gibi 61.72°, 69.68° ve 74.90° olarak ölçülmüştür.

 A_1 temel çözeltisine Zn, Ag ve 1.42 g daha TiO₂ katkılanarak elde edilen E_1 çözeltisinin A_1 çözeltisine göre daha hidrofobik bir yüzey oluşturduğu görülmüştür. Gd katkılı E_2 çözeltisi ile kaplanan yüzeyin E_1 çözeltisi ile benzer yüzey özellikleri göstermişlerdir. Ayrıca Eu ile katkılanan E_3 çözeltisi ile kaplanan yüzeyin E_1 çözeltisi ile kaplanan yüzeye göre daha hidrofobik bir yüzey oluşturduğu görülmektedir.

5.1.4. Hazırlanan karışımların FT-IR spektroskopisi cihazı ile elde edilen analiz sonuçları

Çalışmanın bu bölümünde yapılan FT-IR spektroskopisi analizinde sadece temel çözeltinin FT-IR spektrumu incelenmiştir. Bunun nedeni, temel çözeltiye katkılanan tüm kimyasalların eser miktarlarda olmasından dolayı spektrumda tanımlanamamalarıdır. Miktarı az olan katkı maddelerinin vermiş olduğu bantlar temel fonksiyonel piklerin altında kalmıştır ve bu nedenle FT-IR spektrumlarında gözlenememiştir. A₁ çözeltisinin FT-IR spektrum sonucu Şekil 5.42'de verilmiştir.

Şekil 5.42. A1 çözeltisinin FT-IR spektrum sonucu

GLYMO'nun spektrumda görülen varlığı şu şekildedir; 1055-1076 cm⁻¹ bölgesinde oluşan pik noktaları Si-O-Si karakteristik piklerini göstermektedir. Ayrıca Si-Ph gruplarının absorpsiyon piki ve 1400 cm-1 bölgesinde görülmektedir. Li ve arkadaşları (2020), yaptıkları çalışmalarında, GLYMO'nun benzer dalga boyu aralıklarında Si-O-Si ve Si-Ph piklerini FT-IR spektrum analizlerinde bulmuşlardır.

3-APTES'in spektrumda da görülen varlığı şu şekildedir; 3600 cm-1 bandında N-H gerilme titreşimleri, 1390 cm⁻¹'de Si-C ile ilişkili titreşim bandı gözlenmiştir. Zabihi ve arkadaşları (2015), yaptıkları çalışmalarında, 3-APTES'in benzer dalga boyu aralıklarında N-H gerilme titreşimlerini ve Si-C titreşim bandını FT-IR spektrum analizlerinde bulmuşlardır.

Titanyum (IV) Butoksit'in spektrumda da görülen varlığı şu şekildedir; 2900-3000 cm civarında bir bölgede CH₂ ve CH₃'ün karakteristik pikleri görülmektedir. Darvishi ve Seyed-Yazdi (2017), yaptıkları çalışmalarında, Titanyum (IV) Butoksit'in benzer dalga boyu aralıklarında CH₂ ve CH₃ karakteristik piklerini FT-IR spektrum analizlerinde bulmuşlardır.

5.1.5. UV-VIS spektrofotometre cihazı ile numunelerin optiksel özellikleri

Çalışmada her grup için referans olarak eşdeğer cam numuneler kullanılarak nanolif kaplamalı numunelerin görünür bölge içerisinde (380-800nm) geçirgenlik, yansıma ve soğurma analizleri yapılmıştır. UV-VIS spektrofotometre cihazında yapılan ölçümlerde, kaplanmamış eşdeğer cam numune referans alınarak kaplamaların optiksel özelliklerine etkileri analiz edilmiştir. Analizler sonucunda optiksel özellikleri incelenen numunelerin aralarında oluşan farklılıklarının nedenleri ilk olarak katkılanan kimyasalların optik özelliklere etkileri ardından yüzey üzerinde elde edilen nanolif kaplama içerisinde bulunan kimyasalların yüzey üzerindeki dağılımının belirli noktalarda daha yoğun olabilmesinden dolayı meydana gelebileceği düşünülmektedir.

5.1.5.1. A grubu numunelerin sonuçları

Bu bölümde TiO₂ esaslı A₁, Gd katkılandırılmış TiO₂ esaslı A₂ ve Eu katkılandırılmış TiO₂ esaslı A₃ çözeltileri kullanılarak elde edilen nanolif kaplamalı numunelerin geçirgenlik, soğurma ve yansıma spektrumları elde edilmiştir. Şekil 5.43'te A grubu numunelerin geçirgenlik spektrumları görülmektedir.

Şekil 5.43. A grubu numunelerin geçirgenlik spektrumları

TiO₂ esaslı A₁, Gd katkılandırılmış TiO₂ esaslı A₂ numunelerinin görünür bölge aralığında ortalama geçirgenliği %95.5 civarındadır. Eu katkılandırılmış TiO₂ esaslı A₃ numunesinin görünür bölge aralığında ortalama geçirgenliği ise %97.1 civarındadır. TiO₂ esaslı A₁ numunesinin maksimum geçirgenliği 679 nm dalga boyunda olup, değeri %96.03'tür. Gd katkılandırılmış TiO₂ esaslı A₂ numunesinin maksimum geçirgenliği 699 nm dalga boyunda olup, değeri %96.15'dir. Eu katkılandırılmış TiO₂ esaslı A₃ numunesinin maksimum geçirgenliği 729 nm dalga boyunda olup, değeri %97.50'dir. Şekil 5.44'te A grubu numunelerin soğurma spektrumları görülmektedir.

Şekil 5.44. A grubu numunelerin soğurma spektrumları

UV-VIS soğurma spektrumu incelendiğinde, TiO₂ esaslı A₁ ve Gd katkılandırılmış TiO₂ esaslı A₂ numunelerinde 312 nm bandında soğurma piki görülmektedir. Eu katkılandırılmış TiO₂ esaslı A₃ numunesinde 311 nm bandında bir soğurma piki görülmektedir. A₁ ve A₂ numunelerinde soğurma düşüş oranı en fazla gösterirken, Eu katkılı A₃ numunesi soğurma düşüş oranı, A₁ ve A₂ numuneleri soğurma düşüş oranına göre daha düşük seviyelerde olduğu görülmüştür. Şekil 5.45'te A grubu numunelerin yansıma spektrumları görülmektedir.

Şekil 5.45. A grubu numunelerin yansıma spektrumları

 TiO_2 esaslı A₁, Gd katkılandırılmış TiO_2 esaslı A₂ ve Eu katkılandırılmış TiO_2 esaslı A₃ çözeltileri kullanılarak elde edilen nanolif kaplamalı numunelerin yansıma spektrumu incelendiğinde, A₁, A₂ ve A₃ numunelerinin benzer yansıtma oranına sahip olduğu görülmektedir.

Sonuç olarak A grubu numunelerin optiksel özellikleri incelendiğinde, A_1 ve A_2 numunelerinin en iyi ışınım geçirgenliğine sahip olduğu görülmektedir.

5.1.5.2. B grubu numunelerin sonuçları

 TiO_2 ve Zn esaslı B₁, Gd katkılandırılmış TiO_2 ve Zn esaslı B₂ ve Eu katkılandırılmış TiO_2 ve Zn esaslı B₃ çözeltileri kullanılarak elde edilen nanolif kaplamalı numunelerin geçirgenlik, soğurma ve yansıma spektrumları elde edilmiştir. Şekil 5.46'da B grubu numunelerin geçirgenlik spektrumları görülmektedir.

Şekil 5.46. B grubu numunelerin geçirgenlik spektrumları

B₁ numunesinin görünür bölge aralığında ortalama geçirgenliği %96.1 civarındadır B₂ numunesinin görünür bölge aralığında ortalama geçirgenliği %94.3 civarındadır. B₃ numunesinin görünür bölge aralığında ortalama geçirgenliği ise %93,7 civarındadır. B₁ numunesinin maksimum geçirgenliği 779 nm dalga boyunda olup, değeri %96.93'tür. B₂ numunesinin maksimum geçirgenliği 790 nm dalga boyunda olup, değeri %95.41'dir. B₃ numunesinin maksimum geçirgenliği 749 nm dalga boyunda olup, değeri %94.78'dir. Şekil 5.47'de B grubu numunelerin soğurma spektrumları görülmektedir.

Şekil 5.47. B grubu numunelerin soğurma spektrumları

UV-VIS soğurma spektrumu incelendiğinde, B_1 numunesinin 311 nm, B_2 numunesinin 312 nm bandında, B_3 numunesinin ise 311 nm bandında bir soğurma piki görülmektedir. B_1 numunesinde soğurma düşüş oranı en yüksek iken, B_2 ve B_3 numunelerinde soğurma düşüş oranları, B_1 numunesi soğurma düşüş oranına göre daha düşük seviyelerde olduğu görülmüştür. Şekil 5.48'de B grubu numunelerin yansıma spektrumları görülmektedir.

Şekil 5.48. B grubu numunelerin yansıma spektrumları

 B_1 , B_2 ve B_3 çözeltileri kullanılarak elde edilen nanolif kaplamalı numunelerin görünür bölgedeki yansıma spektrumu incelendiğinde, B_2 numunesinin yansıma özelliğinin, B_1 ve B_3 numunelerine nazaran bir miktar düşük olduğu görülmektedir. B_1 ve B_3 numuneleri arasında ise anlamlı bir farkın olmadığı görülmektedir. Sonuç olarak B grubu numunelerin optiksel özelliklerini karşılaştırdığımızda B_1 numunesinin en yüksek ışınım geçirgenliğine sahip olduğu görülmektedir. Ayrıca B_2 numunesinin ışınım geçirgenliğinin B_1 numunesine çok yakın olduğu ve yüzeye gelen ışınımları en az yansıtan numune olduğu görülmektedir.

5.1.5.3. C grubu numunelerin sonuçları

 TiO_2 ve Ag esaslı C₁, Gd katkılandırılmış TiO_2 ve Ag esaslı C₂ ve Eu katkılandırılmış TiO_2 ve Ag esaslı C₃ çözeltileri kullanılarak elde edilen nanolif kaplamalı numunelerin geçirgenlik spektrumları elde edilmiştir. Şekil 5.49'da C grubu numunelerin geçirgenlik spektrumları görülmektedir.

Şekil 5.49. C grubu numunelerin geçirgenlik spektrumları

 C_1 numunesinin görünür bölge aralığında ortalama geçirgenliği %89.6 civarındadır C_2 numunesinin görünür bölge aralığında ortalama geçirgenliği %78.1 civarındadır. C_3 numunesinin görünür bölge aralığında ortalama geçirgenliği ise %96.6 civarındadır. C_1 numunesinin maksimum geçirgenliği 793 nm dalga boyunda olup, değeri %91.75'tir. C_2 numunesinin maksimum geçirgenliği 794 nm dalga boyunda olup, değeri %82.68'dir. C_3 numunesinin maksimum geçirgenliği 794 nm dalga boyunda olup, değeri %97.31'dir. En iyi geçirgenlik artış oranının C_3 numunesinde olduğu gözlemlenmiştir. Şekil 5.50'de C grubu numunelerin soğurma spektrumları görülmektedir.

Şekil 5.50. C grubu numunelerin soğurma spektrumları

UV-VIS soğurma spektrumu incelendiğinde, C_1 numunesinin 314 nm, C_2 numunesinin 316 nm, C_3 numunesinin ise 310 nm bandında bir soğurma piki görülmektedir. C_2 numunesinde soğurma düşüş oranı en yüksek iken ardından C_1 numunesi ve son olarak C_3 numunesinin soğurma düşüş oranının en düşük olduğu görülmektedir. Şekil 5.51'de C grubu numunelerin yansıma spektrumları görülmektedir.

Şekil 5.51. C grubu numunelerin yansıma spektrumları

 C_1 , C_2 ve C_3 çözeltileri kullanılarak elde edilen nanolif kaplamalı numunelerin görünür bölgedeki yansıma spektrumu incelendiğinde, C_2 numunesinin yansıma özelliğinin, C_1 ve C_3 numunelerine nazaran bir miktar yüksek olduğu görülmektedir. C_1 ve C_3 numuneleri arasında ise anlamlı bir farkın olmadığı görülmektedir. Sonuç olarak C grubu numunelerin optiksel özelliklerini karşılaştırdığımızda C_2 numunesinin en düşük ışınım geçirgenliğine ve yüzeye gelen ışınımları en çok yansıtma özelliğine sahip olduğu görülmektedir. Ayrıca C_3 numunesinin en yüksek ışınım geçirgenliği özelliği gösterdiği C_1 numunesi ile benzer yansıtma özelliğinin olduğu ve yüzeye gelen ışınımları C_2 numunesine göre daha az yansıtma özelliğinin olduğu spektrumda da görülmektedir.

5.1.5.4. D grubu numunelerin sonuçları

TiO₂ esaslı D₁, Gd katkılandırılmış TiO₂ esaslı D₂ ve Eu katkılandırılmış TiO₂ esaslı D₃ çözeltileri kullanılarak elde edilen nanolif kaplamalı numunelerin geçirgenlik, soğurma ve yansıma spektrumları görülmektedir. Şekil 5.52'de D grubu numunelerin geçirgenlik spektrumları görülmektedir.

Şekil 5.52. D grubu numunelerin geçirgenlik spektrumları

 D_1 numunesinin görünür bölge aralığında ortalama geçirgenliği %97.2, D_2 numunesinin ortalama geçirgenliği %97.5, D_3 numunesinin ise %98.7 olduğu görülmüştür. D_1 numunesinin maksimum geçirgenliği 794 nm dalga boyunda olup, değeri %97.95'tir. D_2 numunesinin maksimum geçirgenliği 780 nm dalga boyunda olup, değeri %98.31'dir. D_3 numunesinin maksimum geçirgenliği 780 nm dalga boyunda olup, değeri %99.2'dir. Şekil 5.53'te D grubu numunelerin soğurma spektrumları görülmektedir.

Şekil 5.53. D grubu numunelerin soğurma spektrumları

UV-VIS soğurma spektrumu incelendiğinde, D_1 numunesinin 311 nm, D_2 numunesinin 310 nm, D_3 numunesinin 308 nm bandında bir soğurma piki görülmektedir. D_2 numunesinde soğurma düşüş oranı en yüksek iken, D_1 ve D_3 numuneleri soğurma düşüş oranları, D_2 numunesi soğurma düşüş oranına göre daha düşük seviyelerde olduğu görülmüştür. Şekil 5.54'te D grubu numunelerin yansıma spektrumları görülmektedir.

Şekil 5.54. D grubu numunelerin yansıma spektrumları

Şekil 5.55'te görülen D_1 , D_2 ve D_3 çözeltileri kullanılarak elde edilen nanolif kaplamalı numunelerin görünür bölgedeki yansıma spektrumu incelendiğinde, D_2 numunesinin yüzeye gelen ışınımı yansıtma özelliğinin, D_1 ve D_3 numunelerine nazaran bir miktar daha düşük olduğu görülmektedir. D_3 numunesinin ise yüzeye gelen ışınımı en fazla yansıtma özelliği gösterdiği spektrumda da görülmektedir. Sonuç olarak D grubu numunelerin optiksel özelliklerini karşılaştırdığımızda görünür bölge aralığında D_1 , D_2 ve D_3 numunelerinin benzer ışınım geçirgenliklerine sahip olduğu görülmektedir. Ayrıca D_1 ve D_3 numunesine göre D_2 numunesinin yüzeye gelen ışınımı en düşük yansıtma özelliği, D_3 numunesi ise en yüksek yansıtma özelliği gösteren numunenin ise olduğu görülmektedir.

5.1.5.5. E grubu numunelerin sonuçları

TiO₂, Ag ve Zn esaslı E_1 , Gd katkılandırılmış TiO₂, Ag ve Zn esaslı E_2 ve Eu katkılandırılmış TiO₂, Ag ve Zn esaslı E_3 çözeltileri kullanılarak elde edilen nanolif kaplamalı numunelerin geçirgenlik, soğurma ve yansıma spektrumları görülmektedir. Şekil 5.55'te E grubu numunelerin geçirgenlik spektrumları görülmektedir.

Şekil 5.55. E grubu numunelerin geçirgenlik spektrumları

 E_1 numunesinin görünür bölge aralığında ortalama geçirgenliği %96.52, E_2 numunesinin ortalama geçirgenliği %96.4, E_3 numunesinin ise %97.12 olduğu görülmüştür. E_1 numunesinin maksimum geçirgenliği 759 nm dalga boyunda olup, değeri %97.91'dir. E_2 numunesinin maksimum geçirgenliği 759 nm dalga boyunda olup, değeri %97.87'dir. E_3 numunesinin maksimum geçirgenliği 766 nm dalga boyunda olup, değeri %98.35'tir. Şekil 5.56'da E grubu numunelerin soğurma spektrumları görülmektedir.

Şekil 5.56. E grubu numunelerin soğurma spektrumları

UV-VIS soğurma spektrumu incelendiğinde, E_1 numunesinin 310 nm, E_2 ve E_3 numunesinin 311 nm bandında bir soğurma piki görülmektedir. E_2 ve E_3 numuneleri soğurma düşüş oranlarının benzer olduğu ve E_1 numunesinin soğurma düşüş oranının E_2 ve E_3 numunelerine göre göre daha düşük seviyelerde olduğu görülmektedir. Şekil 5.57'de E grubu numunelerin yansıma spektrumları görülmektedir.

Şekil 5.57. E grubu numunelerin yansıma spektrumları

 E_1 , E_2 ve E_3 çözeltileri kullanılarak elde edilen nanolif kaplamalı numunelerin görünür bölgedeki yansıma spektrumu incelendiğinde, E_3 numunesinin yüzeye gelen ışınımı yansıtma özelliğinin, benzer yansıtma özelliği gösteren E_1 ve E_2 numunelerine nazaran bir miktar daha düşük olduğu görülmektedir. Sonuç olarak E grubu numunelerin optiksel özelliklerini karşılaştırdığımızda görünür bölge aralığında E_1 ve E_2 numunelerinin benzer ışınım geçirgenliği gösterdiği, E_3 numunesinin ise en yüksek ışınım geçirgenliği gösterdiği spektrumlarda görülmektedir. Ayrıca E_1 ve E_2 numunesine göre E_3 numunesinin yüzeye gelen ışınımı en düşük yansıtma özelliği gösterdiği görülmektedir.

5.1.5.6. Nanolif kaplı camların soğurma özellikleri

Elde edilen bu nanolif kaplı camlar, gelen ışığının (fotonların) bir kısmını soğurmaktadır. Şekil 5,58'de görülen nanolif kalınlıklarının SEM görüntüleri dikkate alındığında ortalama nanolif kalınlığı (d) 1,82µm olarak ölçülmüştür. Ayrıca her bir numune grubunun soğurma katsayısı spektrumu, hesaplanan ortalama nanolif kalınlığı kullanılarak hesaplanmıştır.

Şekil 5.58. Nanolif kalınlıklarının SEM görüntüleri

Her bir numunenin görünür bölgede bulunan geçirgenlik oranları esas alınarak soğurma katsayıları (α) hesaplanmıştır. Nnumunelerin soğurma katsayılarının hesaplanması aşağıdaki şekillerde gösterilmiştir. Şekil 5.59'da A grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu görülmektedir.

Şekil 5.59. A grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu

A grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu incelendiğinde, TiO₂ esaslı A₁ numunesi ve Gd katkılandırılmış TiO₂ esaslı A₂ numunesinin 312 nm bandında bir soğurma katsayısı piki görülmektedir. Eu katkılandırılmış TiO₂ esaslı A₃ numunesinin 310 nm bandında bir soğurma katsayısı piki görülmektedir. A₁ ve A₂ numunelerinde soğurma katsayısının dalga boyuna göre düşüş oranı en yüksek iken, A₃ numunesi soğurma katsayısının dalga boyuna göre düşüş oranı, A₁ ve A₂ numuneleri soğurma katsayısının dalga boyuna göre düşüş oranı, A₁ ve A₂ numuneleri soğurma katsayısılarına göre daha düşük düşüş oranlarına sahip olduğu görülmüştür. Şekil 5.60'ta B grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu görülmektedir.

Şekil 5.60. B grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu

B grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu incelendiğinde, B_1 ve B_2 numunesinin 311 nm bandında bir soğurma katsayısı piki

görülmektedir. B_3 numunesinin ise 315 nm bandında bir soğurma katsayısı piki görülmektedir. B_1 numunesinde soğurma katsayısının dalga boyuna göre düşüş oranı en yüksek iken, B_2 ve B_3 numunelerinde soğurma katsayılarının dalga boyuna göre düşüş oranları, B_1 numunesi soğurma katsayısına göre daha düşük düşüş oranlarına sahip olduğu görülmüştür. Şekil 5.61'de C grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu görülmektedir.

Şekil 5.61. C grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu

C grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu incelendiğinde, C_1 ve C_2 numunelerinde 315 nm bandında bir soğurma katsayısı piki görülmektedir. C_3 numunesinin ise 311 nm bandında bir soğurma katsayısı piki görülmektedir. C_2 numunesinde soğurma katsayısının dalga boyuna göre düşüş oranı en yüksek iken, C_1 ve C_3 numunelerinde soğurma katsayısının dalga boyuna göre düşüş oranları, C_2 numunesi soğurma katsayısına göre daha düşük düşüş oranlarına sahip olduğu görülmüştür. Şekil 5.62'de D grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu görülmektedir.

Şekil 5.62. D grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu

D grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu incelendiğinde, D_1 ve D_3 numunesinde 311 nm bandında bir soğurma katsayısı piki görülmektedir. D_2 numunesinde ise 310 nm bandında bir soğurma katsayısı piki görülmektedir. D_2 numunesinde soğurma katsayısının dalga boyuna göre düşüş oranı en yüksek iken, D_1 ve D_3 numunelerinde soğurma katsayısının dalga boyuna göre düşüş oranları, D_2 numunesi soğurma katsayısına göre daha düşük düşüş oranlarına sahip olduğu görülmüştür. Şekil 5.63'te E grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu görülmektedir.

Şekil 5.63. E grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu

E grubu numunelerin görünür bölgede bulunan soğurma katsayısı spektrumu incelendiğinde, E_1 numunesinde 310 nm bandında bir soğurma katsayısı piki görülmektedir. E_2 ve E_3 numunelerinde ise 311 nm bandında bir soğurma katsayısı piki görülmektedir. E_3 numunesinde soğurma katsayısının dalga boyuna göre düşüş oranı en yüksek ardından E_2 numunesinde soğurma katsayısının dalga boyuna göre düşüş oranı E_3 numunesine benzer olsa da nispeten daha düşük düşüş oranına sahiptir. E_1 numunesini soğurma katsayısının dalga boyuna göre düşüş E_3 numunelerine göre daha düşük oranlara sahip olduğu görülmüştür.

5.2. Elektro-Eğirme ve Sol-Jel Yöntemi ile Kaplanan ve Kaplanmayan Polikristal FV Panellerin Enerji Verimlilik Oranları

Çalışmanın bu adımında, kullanılan tüm FV paneller iç kayıpların minimize edilmesi için aynı marka ve model seçilmiştir. Ardından çalışma kapsamında A, B, C, D ve E grupları olarak adlandırılan test ölçümleri yapılan FV panel grupları oluşturulmuştur. Her grupta bir tane hiç kaplanmayan olmak üzere 4 adet FV panel olmakla birlikte, hiç kaplanmayan FV panel referans alınarak kaplamaların enerji verimliliğine etkileri incelenmiştir.

İnceleme, Afyon Kocatepe Üniversitesi Mühendislik Fakültesi çalışma alanında yapılmıştır. Bu incelemede veri kayıt cihazına elektrik tesisat bağlantıları yapılarak dörderli gruplar halinde bulunan FV panellerin gün içi saatlik periyotlarda elektriksel parametre değerleri belirtilen tarih aralıklarında kayıt altına alınmıştır. Ayrıca veri kayıt sisteminin bulunduğu konuma ve tarih aralığına ait Meteoroloji Genel Müdürlüğünden güneş radyasyon şiddetleri (W/m²) ve güneşlenme süreleri temin edilmiştir. Temin edilen bu verilerle beraber, veri kayıt cihazı ile kaydedilen elektriksel parametre değerleri kullanılarak her grubun kendi içerisinde enerji verim hesaplamaları yapılmıştır.

5.2.1. Çalışmada kullanılan ticari FV panelin teknik parametre ölçümleri

10W FV panelin üretici tarafından belirtilen teknik parametre değerlerine göre $V_{oc}=22,10$ V, $I_{sc}=0.67$ A, $V_{max}=18.00$ V, $I_{max}=0.56$ A ve A=625 cm² olarak belirtilmiştir. Bu değerler kullanılarak E=1000 W/m² ışınım altında FV panelin enerji

verimlilik oranı denklem 3.5'te verilen formül ile hesaplanarak %16.1 ve maksimum çıkış gücü 10.08 Wp olarak bulunmuştur. Voc ölçümünde, FV panel herhangi bir yüke bağlı değildir bu nedenle terminalleri açıktır (sonsuz direnç), bu durumda terminallerinde maksimum voltaj 22.10 V olarak ölçülmüştür. Terminalleri açık olduğundan akım akışı olmaz (I = 0) çünkü akımın dolaştığı bir elektrik devresi veya yük yoktur. Bir FV panelin çıkış gücü esas olarak ona bağlı elektrik yüküne bağlıdır. Bu yük, sonsuz dirençten ($\infty\Omega$) sıfır dirence (0Ω) kadar değişebilir. Ohm yasası, bir direnç üzerinden akan akım ile karşıdaki gerilim arasındaki ilişkiyi açıkladığından, bir FV panelin gücünü ölçmek için bir direnç kullanılarak FV panel terminallerinin yüke bağlanması ile en doğru çıkış gücü bulunur. Bu durumda FV panelinin çıkış gücü I=0 A olacağı için 0W olacaktır. Bir başka bir deyişle üretilen elektrik gücü yoktur. Isc, FV panel terminallerinin kısa devre yaptığı veya birbirine bağlandığı (sıfır direnç) anlamına gelir ve maksimum panel akımının, bu durumda 0.67A akmasına izin veren tamamen kapalı bir elektrik devresi oluşturur. Terminal bağlantıları kısa devre olduğundan, FV panelinin çıkış gücü 0 W olacaktır. Yine üretilen elektrik gücü yoktur. Dolayısıyla FV paneller, gerçek ortamda bir elektrik yüküne bağlandığında kullanılabilir elektrik sağlar ve bir FV panelin maksimum çıkış gücü noktasını belirlemek için Ohm Yasası kullanılır. Bu bilgiler ışığında, FV panelin üretici tarafından belirtilen teknik parametre değerlerinden bağımsız, güneş simülatörü ile elde ettiğimiz E=1000 W/m² ışınım şiddeti altında reosta yardımıyla farklı ohm değerlerinde yapmış olduğumuz ölçümde, yük altındaki FV panelin Isc, Voc, Vmax ve Imax değerleri multimetre ile ölçülerek FV panelin maksimum çıkış gücü noktası tespit edilmiştir. Şekil 5.64'te ölçüm sisteminin şematik gösterimi verilmiştir.

Şekil 5.64. Ölçüm sisteminin şematik gösterimi

Çizelge 5.2'de reosta yardımıyla 0-32 ohm aralığında multimetre ile ölçülen V_{max} , $I_{max} I_{sc}$ ve V_{oc} değerleri görülmektedir.

Direnç Değerleri (Ω)	V (V)	I (A)	V*I (W)
0	0	0,375(Isc)	0
2	0,690	0,367	0,25323
4	1,37	0,37	0,5069
6	2,45	0,365	0,89425
8	2,75	0,35	0,9625
10	3,33	0,332	1,10556
12	3,92	0,332	1,30144
14	4,49	0,327	1,46823
16	5,1	0,325	1,6575
18	5,82	0,33	1,9206
20	6,3	0,31	1,953
22	6,75	0,31	2,0925
24	7,5	0,31	2,325
26	8,1	0,31	2,511
28	8,6	0,31	2,666
30	9,2	0,31	2,852
32	10,1	0,318	3,2118
$\Omega \infty$	21,62(Voc)	0	0

Çizelge 5.2. Multimetre ile ölçülen Vmax, Imax, Isc ve Voc değerleri

Şekil 5.65'te FV panelin hesaplanan I-V karakteristiği görülmektedir.

Şekil 5.65. FV panelin hesaplanan I-V karakteristiği

Yük dirençlerine bir reosta kullanılarak minimum sıfır Ohm (0Ω) değeri ile maksimum 32 Ω değeri arasında ayarlanabilen bir direnç olanağı sağlanmıştır. Harici olarak bağlanan yük direnci 2 Ohm aralıklarla arttırılarak FV panelin çıkış voltajını ve akım değerleri ölçülerek, maksimum gücün, yük direnci 32 Ohm civarındayken olduğu açıkça görülmektedir.

Yapılan ölçüm sonucunda, yük direnci reosta ile 32 Ω olarak ayarlandığı zaman, FV panel anlık ölçüm parametrelerine göre 10,1 V ve 0,318 A üretmiş olup, maksimum çıkış gücü ise 3.2118 Wp olarak bulunmuştur. Ayrıca anlık ölçüm parametrelerine göre enerji verimlilik oranı ise %5.14 olarak bulunmuştur. Yapılan ölçümler sonucunda, FV panelin üretici veri etiketinde bulunan değerler ile yük altında yapılan ölçüm sonucunun uyuşmadığı ve veri etiket değerlerine göre daha düşük enerji verim oranının olduğu tespit edilmiştir.

5.2.2. A grubu FV panel grubunun enerji verimliliğinin hesaplanması aşamaları

FV panel grubu A₀ (referans FV panel), A₁, A₂ ve A₃ olarak adlandırılmıştır. Veri kayıt cihazı ile tam yükte alınan veriler için kayıt alanı, günlük 2 saatlik periyotlarla 4 ayrı FV panelin; maksimum güç değerleri 28.05.2021-09.06.2021 tarihleri arası kayıt altına alınmıştır. Belirtilen süre zarfında A grubu FV panel grubu için günlük maksimum güç değerleri Çizelge 5.3'te görülmektedir.

	A0 PMAX (W)	A ₁ P _{MAX} (W)	A ₂ P _{MAX} (W)	A3 PMAX (W)
28.05.2021	0,529	1,1	1,28	0,807
29.05.2021	0,471	0,987	1,124	0,677
30.05.2021	0,624	1,346	1,50	0,92
31.05.2021	0,078	0,22	0,227	0,228
1.06.2021	0,645	1,442	1,564	0,96
2.06.2021	0,044	0,115	0.119	0,148
3.06.2021	0,256	0,58	0,634	0,45
4.06.2021	0,653	1,347	1,454	0,94
5.06.2021	0,25	0,515	0,54	0,434
6.06.2021	0,387	0,814	0,91	0,647
7.06.2021	0,398	0,85	0,995	0,61
8.06.2021	0,5	1	1,17	0,72
9.06.2021	0,5	0,968	1,05	0,638

Çizelge 5.3. A grubu FV panel grubu için günlük maksimum güç değerleri

FV sistemin bulunduğu konum için Meteoroloji Genel Müdürlüğünden temin edilen günlük radyasyon değerleri (W/m²) ve Çizelge 5.4'te verilen günlük P_{max} verileri ışığında A grubu FV panellerin denklem 3.5'te belirtilen enerji verim hesabına göre hesaplanan günlük enerji verim oranları Çizelge 5.4'te görüldüğü gibidir.

	Günlük Enerji Verim Oranları (%)					
	Günlük Radyasyon Değerleri (W/m²)	FV Hücrenin Alanı (m ²)	Ao	A1	\mathbf{A}_2	A ₃
28.05.2021	747,4		1,13	2,35	2,74	1,72
29.05.2021	877,2		0,86	1,80	2,05	1,23
30.05.2021	794,4		1,25	2,70	3,02	1,85
31.05.2021	1555		0,08	0,22	0,23	0,23
1.06.2021	1400		0,73	1,65	1,78	1,10
2.06.2021	863		0,08	0,21	0,22	0,27
3.06.2021	735,3	0,0625	0,55	1,26	1,38	1,08
4.06.2021	877,2		1,19	2,45	2,65	1,71
5.06.2021	645,2		0,62	1,27	1,34	1,07
6.06.2021	689,4		0,90	0,19	2,11	1,50
7.06.2021	734		0,86	1,85	2,16	1,33
8.06.2021	1758		0,45	0,91	1,06	0,66
9.06.2021	950		0,84	1,63	1,76	1,07
Ener	ji Verim Oranları Ortal	0,73	1,42	1,73	1,14	

Çizelge 5.4. A grubu FV panellerin günlük enerji verim oranları

Ölçülen günlük enerji verim değerleri baz alınarak belirtilen süre zarfı boyunca A₀ olarak adlandırılan referans FV panelin ortalama enerji verim oranı %0.73, A₁ olarak adlandırılan FV panelin ortalama enerji verim oranı %1.42, A₂ olarak adlandırılan FV panelin ortalama enerji verim oranı %1.73, A₃ olarak adlandırılan FV panelin ortalama enerji verim oranı %1.73, A₃ olarak adlandırılan FV panelin ortalama enerji verim oranı %1.73, A₃ olarak adlandırılan FV panelin ortalama enerji verim oranı %1.14 olarak ölçülmüştür. A grubu FV panellerin ölçüm periyot süresi zarfında ölçülen enerji verimlilik ortalamalarına göre, en düşük enerji verim oranının FV panel yüzeyinde kaplama bulunmayan A₀ FV paneli olduğu, en yüksek güç artışının ise yüzeyinde TiO₂ esaslı Gd katkılı A₂ kaplamalı FV panelinde olduğu görülmektedir.

5.2.3. B grubu FV panel grubunun enerji verimliliğinin hesaplanması aşamaları

FV panel grubu B_0 , B_1 , B_2 ve B_3 olarak adlandırılmıştır. Veri kayıt cihazı ile tam yükte alınan veriler için kayıt alanı, günlük 2 saatlik periyotlarla 4 ayrı FV panelin; maksimum güç değerleri 10.06.2021-23.06.2021 tarihleri arası kayıt altına alınmıştır. Belirtilen süre zarfında B grubu FV panel grubu için günlük ortalama maksimum güç değerleri Çizelge 5.5'te görülmektedir.

	B ₀ P _{MAX} (W)	B ₁ P _{MAX} (W)	B ₂ P _{MAX} (W)	B ₃ P _{MAX} (W)
10.06.2021	0,359	0,6	0,85	0,379
11.06.2021	0,712	0,938	1,28	0,66
12.06.2021	0,756	0,976	1,44	0,593
13.06.2021	0,586	1	1,355	0,7
14.06.2021	0,163	0,237	0,321	0,174
15.06.2021	0,783	0,49	0.134	0,366
16.06.2021	0,047	0,066	0,047	0,047
17.06.2021	0,078	0,144	0,198	0,104
18.06.2021	0,045	0,066	0,089	0,042
19.06.2021	0,593	0,806	1,07	0,576
20.06.2021	0,514	0,666	1,03	0,452
21.06.2021	0,122	0,17	0,206	0,092
22.06.2021	0,134	0,186	0,267	0,133
23.06.2021	0,217	0,272	0,388	0,199

Çizelge 5.5. B grubu FV panel grubu için günlük ortalama maksimum güç değerleri

FV sistemin bulunduğu konum için Meteoroloji Genel Müdürlüğünden temin edilen günlük radyasyon değerleri (W/m²) ve Çizelge 5.5'te verilen günlük P_{max} verileri ışığında B grubu FV panellerin denklem 3.5'te belirtilen enerji verim hesabına göre hesaplanan günlük enerji verim oranları Çizelge 5.6'da görüldüğü gibidir.
		FV				
	Günlük Radyasyon Değerleri (W/m ²)	Hücrenin Alanı (m ²)	Bo	B1	Ba	B ₂
			D ₀	D 1	D 2	D 3
10.06.2021	787,8		0,73	1,22	1,72	0,79
11.06.2021	966,6		1,17	1,55	2,12	1,09
12.06.2021	902,4		1,34	1,73	2,55	1,05
13.06.2021	873,5		1,07	1,83	2,48	1,28
14.06.2021	921		0,28	0,41	0,55	0,30
15.06.2021	713	0.0525	1,75	1,1	0.3	0,82
16.06.2021	2133,3	0,0625	0,03	0,05	0,03	0,03
17.06.2021	5666		0,02	0,04	0,05	0,03
18.06.2021	750		0,09	0,14	0,19	0,09
19.06.2021	771,4		1,23	1,67	2,22	1,2
20.06.2021	931		0,88	1,14	1,77	0,77
21.06.2021	1031		1,89	0,26	0,32	0,14
22.06.2021	875		0,24	0,34	0,49	0,24
23.06.2021	860		0,40	0,50	0,72	0,37
Enerji	Verim Oranları Ortalaı	nası	0,794	0,855	1,17	0,587

Çizelge 5.6. B grubu FV panellerin günlük enerji verim oranları

Günlük Enerji Verim Oranları (%)

Ölçülen günlük enerji verim değerleri baz alınarak belirtilen süre zarfı boyunca B₀ olarak adlandırılan referans FV panelin ortalama enerji verim oranı %0.794, B₁ olarak adlandırılan FV panelin ortalama enerji verim oranı %0.855, B₂ olarak adlandırılan FV panelin ortalama enerji verim oranı %1.17, B₃ olarak adlandırılan FV panelin ortalama enerji verim oranı %0.587 dir.

B grubu FV panellerin ölçüm periyot süresi zarfında ölçülen enerji verimlilik ortalamalarına göre, en düşük enerji verim oranının FV panel yüzeyinde TiO₂ ve Zn esaslı Eu katkılı B₃ kaplamalı FV paneli olduğu, en yüksek güç artışının ise yüzeyinde TiO₂ ve Zn esaslı Gd katkılı B₂ kaplamalı FV panelinde olduğu görülmektedir. Yüzeyinde hiç kaplama bulunmayan B₀ FV paneli ve TiO₂ ve Zn esaslı Eu katkılı B₂ kaplaması bulunan FV panelin ise çok yakın enerji verim oranına sahip olduğu görülmektedir.

5.2.4. C grubu FV panel grubunun enerji verimliliğinin hesaplanması aşamaları

FV panel grubu C_0 , C_1 , C_2 ve C_3 olarak adlandırılmıştır. Veri kayıt cihazı ile tam yükte alınan veriler için kayıt alanı, günlük 2 saatlik periyotlarla 4 ayrı FV panelin; maksimum güç değerleri 25.06.2021-12.07.2021 tarihleri arası kayıt altına alınmıştır. Belirtilen süre zarfında C grubu FV panel grubu için günlük ortalama maksimum güç değerleri Çizelge 5.7'de görülmektedir.

	C ₀ P _{MAX} (W)	$C_1 P_{MAX}(W)$	$C_2 P_{MAX}(W)$	$C_{3}P_{MAX}(W)$
25.06.2021	0,315	0,767	0,301	0,237
26.06.2021	0,648	1,558	0,601	0,51
27.06.2021	0,581	1,4	0,55	0,388
28.06.2021	0,066	0,144	0,064	0,07
29.06.2021	0,585	1,35	0,511	0,426
30.06.2021	0,418	0,987	0.387	0,327
01.07.2021	0,558	1,35	0,53	0,426
02.07.2021	0,738	1,733	0,652	0,547
03.07.2021	0,114	0,24	0,097	0,089
04.07.2021	0,151	0,348	0,142	0,12
05.07.2021	0,178	0,391	0,148	0,142
06.07.2021	0,668	1,546	0,59	0,516
07.07.2021	0,725	1,73	0,658	0,54
08.07.2021	0,585	1,347	0,515	0,466
09.07.2021	0,545	1,241	0,467	0,426
10.07.2021	0,712	1,636	0,65	0,534
11.07.2021	0,628	1,473	0,57	0,474
12.07.2021	1,317	3,03	1,126	0,984

Çizelge 5.7. C grubu FV panel grubu için günlük ortalama maksimum güç değerleri

FV sistemin bulunduğu konum için Meteoroloji Genel Müdürlüğünden temin edilen günlük radyasyon değerleri (W/m²) ve Çizelge 5.7'de verilen günlük P_{max} verileri ışığında C grubu FV panellerin denklem 3.5'te belirtilen enerji verim hesabına göre hesaplanan günlük enerji verim oranları Çizelge 5.8'de görüldüğü gibidir.

	Günlük Radyasyon Değerleri (W/m²)	FV Hücrenin Alanı (m ²)	C ₀	C 1	C ₂	С3
25.06.2021	699		0,72	1,75	0,69	0,54
26.06.2021	700		1,48	3,56	2,05	1,37
27.06.2021	807,2		1,15	2,77	1,09	0,77
28.06.2021	700,8		0,15	0,32	0,146	0,16
29.06.2021	688,5		1,36	3,13	1,18	0,99
30.06.2021	682,1		0,98	2,31	0,90	0,75
01.07.2021	682,5		1,3	3,16	1,24	0,61
02.07.2021	656,2		1,8	4,22	1,59	1,33
03.07.2021	1312,5	0,0625	0,14	0,29	0,12	0,11
04.07.2021	750		0,32	0,81	0,30	0,25
05.07.2021	823,5		0,34	0,76	0,29	0,27
06.07.2021	861,5		1,24	2,87	1,09	0,96
07.07.2021	1000		1,16	2,77	1,05	0,86
08.07.2021	1066		0,88	2,02	0,77	0,7
09.07.2021	1222		0,71	1,62	0,61	0,56
10.07.2021	950		0,84	1,63	1,76	1,07
11.07.2021	730,4		1,37	3,22	1,25	1,62
12.07.2021	656,2		3,21	7,39	2,74	2,15
Enerji	Enerji Verim Oranları Ortalaması		1,06	2,56	1,05	0,84

Çizelge 5.8. C grubu FV panellerin günlük enerji verim oranları

Günlük Enerji Verim Oranları (%)

Ölçülen günlük enerji verim değerleri baz alınarak belirtilen süre zarfı boyunca C_0 olarak adlandırılan referans FV panelin ortalama enerji verim oranı %1.06, C_1 olarak adlandırılan FV panelin ortalama enerji verim oranı %2.56, C_2 olarak adlandırılan FV panelin ortalama enerji verim oranı %1.05, C_3 olarak adlandırılan FV panelin ortalama enerji verim oranı %1.05, C_3 olarak adlandırılan FV panelin ortalama enerji verim oranı %1.05, C_3 olarak adlandırılan FV panelin ortalama enerji verim oranı %0.84 olarak bulunmuştur. C grubu FV panellerin ölçüm periyot süresi zarfında ölçülen enerji verimlilik ortalamalarına göre, en düşük enerji verim oranının FV panel yüzeyinde TiO₂ ve Ag esaslı Gd katkılı C₃ kaplamalı FV paneli olduğu, en yüksek güç artışının ise yüzeyinde TiO₂ ve Ag esaslı kaplama bulunan C₁ kaplamalı FV panelinde olduğu görülmektedir. Yüzeyinde hiç kaplama bulunmayan C₀ FV paneli ve TiO₂ ve Ag esaslı Gd katkılı C₂ kaplaması bulunan FV panelin ise aynı enerji verim oranına sahip olduğu görülmektedir.

96

5.2.5. D grubu FV panel grubunun enerji verimliliğinin hesaplanması aşamaları

FV panel grubu D₀, D₁, D₂ ve D₃ olarak adlandırılmıştır. Veri kayıt cihazı ile tam yükte alınan veriler için kayıt alanı, günlük 2 saatlik periyotlarla 4 ayrı FV panelin; maksimum güç değerleri 21.07.2021-06.08.2021 tarihleri arası kayıt altına alınmıştır. Belirtilen süre zarfında D grubu FV panel grubu için günlük ortalama maksimum güç değerleri Çizelge 5.9'da görülmektedir.

	D ₀ P _{MAX} (W)	D ₁ P _{MAX} (W)	D ₂ P _{MAX} (W)	D ₃ P _{MAX} (W)
21.07.2021	0,741	1,65	1,65	1,228
22.07.2021	0,643	1,37	1,38	0,97
23.07.2021	0,49	1,07	1,07	0,741
24.07.2021	0,638	1,392	1,354	1
25.07.2021	0,791	1,687	1,661	1,2
26.07.2021	0,71	1,619	1,566	1,12
27.07.2021	0,887	1,93	1,86	1,367
28.07.2021	0,935	2,01	1,95	1,45
29.07.2021	0,814	1,72	1,78	1,24
30.07.2021	0,676	1,44	1,33	1,1
31.07.2021	0,776	1,64	1,5	1,07
01.08.2021	0,9	2,01	1,81	1,295
02.08.2021	0,47	0,987	0,984	0,69
03.08.2021	0,795	1,71	1,666	1,174
04.08.2021	0,757	1,595	1,562	1,1
05.08.2021	0,63	1,32	1,315	0,92
06.08.2021	1	2,08	2,06	1,464

Çizelge 5.9. D grubu FV panel grubu için günlük ortalama maksimum güç değerleri

FV sistemin bulunduğu konum için Meteoroloji Genel Müdürlüğünden temin edilen günlük radyasyon değerleri (W/m²) ve Çizelge 5.9'da verilen günlük P_{max} verileri ışığında D grubu FV panellerin denklem 3.5'te belirtilen enerji verim hesabına göre hesaplanan günlük enerji verim oranları Çizelge 5.10'da görüldüğü gibidir.

		Günlük Enerji Verim Oranları (%)				
	Günlük Radyasyon Değerleri (W/m²)	FV Hücrenin Alanı (m²)	\mathbf{D}_0	D1	\mathbf{D}_2	D ₃
21.07.2021	724,1		1,63	3,64	3,64	2,71
22.07.2021	652		1,58	3,36	3,386	2,38
23.07.2021	700,8		1,12	2,44	2,44	1,69
24.07.2021	688,5		1,483	3,237	3,15	2,32
25.07.2021	682,1		1,857	3,96	3,9	2,817
26.07.2021	682,5		1,66	3,796	3,67	2,626
27.07.2021	656,2		2,163	4,7	4,536	3,33
28.07.2021	1312,5		1,14	2,45	2,38	1,77
29.07.2021	750		1,736	3,67	3,8	2,645
30.07.2021	823,5		1,313	2,797	2,584	2,137
31.07.2021	861,5		1,44	3,04	2,786	1,987
01.08.2021	1000		1,44	3,216	2,896	2,07
02.08.2021	1066		0,70	1,48	1,477	1,03
03.08.2021	1222		1,04	2,24	2,18	1,537
04.08.2021	950		1,275	2,686	2,63	1,85
05.08.2021	730,4		1,38	2,89	2,88	2,01
06.08.2021	656,2		2,44	5,07	5,02	3,57
Enerji	Verim Oranları Orta	laması	1,494	3,4	3,138	2,34

Çizelge 5.10. D grubu FV panellerin günlük enerji verim oranları

Ölçülen günlük enerji verim değerleri baz alınarak belirtilen süre zarfı boyunca D_0 olarak adlandırılan referans FV panelin ortalama enerji verim oranı %1.494, D_1 olarak adlandırılan FV panelin ortalama enerji verim oranı %3.4, D_2 olarak adlandırılan FV panelin ortalama enerji verim oranı %3.138, D_3 olarak adlandırılan FV panelin ortalama enerji verim oranı %3.138, D_3 olarak adlandırılan FV panelin ortalama enerji verim oranı %3.138, D_3 olarak adlandırılan FV panelin ortalama enerji verim oranı %2.34 olarak bulunmuştur. D grubu FV panellerin ölçüm periyot süresi zarfında ölçülen enerji verimlilik ortalamalarına göre, en düşük enerji verim oranının FV panel yüzeyine herhangi bir kaplama yapılmayan D_0 FV paneli olduğu, en yüksek enerji verim oranının ise yüzeyinde TiO₂ esaslı kaplama bulunan D_1 kaplamalı FV panelinde olduğu görülmektedir. TiO₂ esaslı ve Gd katkılı D_2 kaplaması bulunan FV panelinin de D_1 kaplaması bulunan FV paneline çok yakın bir enerji verim oranına sahip olduğu görülmektedir.

5.2.6. E grubu FV panel grubunun enerji verimliliğinin hesaplanması aşamaları

FV panel grubu D_0 , D_1 , D_2 ve D_3 olarak adlandırılmıştır. Veri kayıt cihazı ile tam yükte alınan veriler için kayıt alanı, günlük 2 saatlik periyotlarla 4 ayrı FV panelin; maksimum güç değerleri 08.08.2021-21.08.2021 tarihleri arası kayıt altına alınmıştır. Belirtilen süre zarfında E grubu FV panel grubu için günlük ortalama maksimum güç değerleri Çizelge 5.11'de görülmektedir.

	E ₀ P _{MAX} (W)	E ₁ P _{MAX} (W)	E ₂ P _{MAX} (W)	E ₃ P _{MAX} (W)
08.08.2021	0,042	0,05	0,108	0,092
09.08.2021	0,736	0,88	1,453	1,298
10.08.2021	0,735	0,88	1,46	1,31
11.08.2021	1	1,242	2,027	1,828
12.08.2021	0,736	0,848	1,434	1,234
13.08.2021	0,854	1,04	1,71	1,57
14.08.2021	0,77	0,942	1,584	1,43
15.08.2021	1,29	1,69	2,5	2,357
16.08.2021	0,793	1,04	1,57	1,41
17.08.2021	0,936	1,192	1,78	1,621
18.08.2021	0,38	0,494	0,775	0,595
19.08.2021	0,745	0,97	1,457	1,39
20.08.2021	0,876	1,084	1,67	1,512
21.08.2021	1,06	1,32	1,99	1,82

Çizelge 5.11. E grubu FV panel grubu için günlük ortalama maksimum güç değerleri

FV sistemin bulunduğu konum için Meteoroloji Genel Müdürlüğünden temin edilen günlük radyasyon değerleri (W/m^2) ve Çizelge 5.11'de verilen günlük P_{max} verileri ışığında E grubu FV panellerin denklem 3.5'te belirtilen enerji verim hesabına göre hesaplanan günlük enerji verim oranları Çizelge 5.12'de görüldüğü gibidir.

		Günlük Enerji Verim Oranları (%)				
	Günlük Radyasyon Değerleri (W/m²)	FV Hücrenin Alanı (m ²)	Eo	E1	E ₂	E3
08.08.2021	820,9		0,08	0,097	0,21	0,18
09.08.2021	632		1,86	2,22	3,68	3,28
10.08.2021	627		1,87	2,24	3,72	3,34
11.08.2021	676,2		2,36	2,94	4,79	4,32
12.08.2021	637,1		1,85	2,13	3,60	3,10
13.08.2021	654,5		2,08	2,54	4,18	3,84
14.08.2021	611,5	0,0625	2,01	2,46	4,14	3,74
15.08.2021	611,1		3,37	4,42	6,54	6,17
16.08.2021	1153,8		1,1	1,44	2,18	1,95
17.08.2021	661		2,26	2,88	4,3	3,92
18.08.2021	684,7		0,89	1,15	1,81	1,39
19.08.2021	800		1,49	1,94	2,91	2,78
20.08.2021	721,1		1,94	2,40	3,70	3,35
21.08.2021	681,8		2,48	3,1	4,67	4,27
Enerji	Verim Oranları Orta	laması	1,83	2,22	3,60	3,18

Çizelge 5.12. E grubu FV panellerin günlük enerji verim oranları

Ölçülen günlük enerji verim değerleri baz alınarak belirtilen süre zarfı boyunca E_0 olarak adlandırılan referans FV panelin ortalama enerji verim oranı %1.83, E_1 olarak adlandırılan FV panelin ortalama enerji verim oranı %2.22, E_2 olarak adlandırılan FV panelin ortalama enerji verim oranı %3.6, E_3 olarak adlandırılan FV panelin ortalama

enerji verim oranı %3.18 olarak bulunmuştur. E grubu FV panellerin ölçüm periyot süresi zarfında ölçülen enerji verimlilik ortalamalarına göre, en düşük enerji verim oranının FV panel yüzeyine herhangi bir kaplama yapılmayan E₀ FV paneli olduğu, en yüksek enerji verim oranının ise yüzeyinde TiO₂, Ag ve Zn esaslı kaplama bulunan E₂ kaplamalı FV panelinde olduğu görülmektedir. TiO₂, Ag ve Zn esaslı ve Eu katkılı E₃ kaplaması bulunan FV panelinin de E₂ kaplaması bulunan FV paneline çok yakın bir enerji verim oranına sahip olduğu görülmektedir.

5.2.7. FV panel verilerinin normallik testi

Her bir FV panelin arduino tabanlı veri kayıt sistemi ile elde edilen Pmax değerleri kullanılarak normallik testi yapılmıştır. Yapılan tüm normallik testleri Kolmogorov-Smirnov ile test edilmiştir. Ölçümlerin her birinin normal dağılım göstermediği, testlerin önemli olduğu (p<0.001) bulunmuştur. Bu yüzden tüm ölçümler parametrik olmayan Mann Whitney U testi kullanılarak yapılmıştır. Tüm testlerde önem düzeyi %95 olarak hesap edilmiştir. Testlerinin tamamında hiç kaplanmayan FV panellerin (A₀, B₀, C₀, D₀ ve E₀) Pmax değerleri temel alınarak örneklemler oluşturulmuştur. Mann Whitney U testinde ölçümler arasında önemli düzeyde farklılık olabilmesi için test sonucunda p<0.05 parametresine göre ölçümler karşılaştırılmıştır. Çizelge 5.13'te A₀ ve A₁ örneklemlerinin Mann Whitney U testi sonuçları görülmektedir.

Ölçümler	n (örneklem	Medyan (min-max)	р
	sayısı)		
A ₀	136	0.184 (0-3.48)	0.002*
A ₁	136	0.391 (0-7.08)	0.005*

Çizelge 5.13. A₀ ve A₁ örneklemlerinin Mann Whitney U testi sonuçları

 A_0 ölçümü ile A_1 ölçümü arasında önemli düzeyde farklılık bulunmuştur (p=0.003). A_1 ölçümünün ortanca değeri (0.391), A_0 ölçümünün ortanca değerinden (0.184) daha büyük olduğu tespit edilmiştir. Çizelge 5.14'te A_0 ve A_2 örneklemlerinin Mann Whitney U testi sonuçları görülmektedir.

Ölçümler	n (örneklem	Medyan (min-max)	р
A ₀	136	0.184 (0-3.48)	0.001*
A ₂	136	0.405 (0-8.20)	0.001*

Çizelge 5.14. A₀ ve A₂ örneklemlerinin Mann Whitney U testi sonuçları

 A_0 ölçümü ile A_2 ölçümü arasında önemli düzeyde farklılık bulunmuştur (p=0.001). A_2 ölçümünün ortanca değeri (0.405), A_0 ölçümünün ortanca değerinden (0.184) daha büyük olduğu tespit edilmiştir. Çizelge 5.15'te A_0 ve A_3 örneklemlerinin Mann Whitney U testi sonuçları görülmektedir.

Çizelge 5.15. A₀ ve A₃ örneklemlerinin Mann Whitney U testi sonuçları

Ölçümler	n (örneklem sayısı)	Medyan (min-max)	р
A ₀	136	0.184 (0-3.48)	<0.001*
A ₃	136	0.402 (0-4.37)	<0.001

 A_0 ölçümü ile A_3 ölçümü arasında önemli düzeyde farklılık bulunmuştur (p<0.001). A_2 ölçümünün ortanca değeri (0.402), A_0 ölçümünün ortanca değerinden (0.184) daha büyük olduğu tespit edilmiştir. Sonuç olarak A grubu FV panellerin hesaplanan enerji verimlilik oranları ile medyan testi sonuçlarının uyumlu olduğu görülmektedir. Çizelge 5.16'da B_0 ve B_1 örneklemlerinin Mann Whitney U testi sonuçları görülmektedir.

Çizelge 5.16. B₀ ve B₁ örneklemlerinin Mann Whitney U testi sonuçları

Ölçümler	n (örneklem	Medyan (min-max)	р
	sayısı)		
B_0	90	0.473 (0-3.14)	
			0.087
B_1	90	0.534 (0-3.68)	

Bu test sonuçlarına göre elde edilen B_0 ölçümü ile B_1 ölçümü arasında önemli düzeyde farklılık bulunmamıştır (p=0.087). B_1 ölçümünün ortanca değeri (0.534), B_0 ölçümünün ortanca değerinden (0.473) daha büyük olduğu tespit edilmiştir. Çizelge 5.17'de B_0 ve B_2 örneklemlerinin Mann Whitney U testi sonuçları görülmektedir.

Ölçümler	n (örneklem	Medyan (min-max)	р
-	sayısı)		-
\mathbf{B}_0	90	0.473 (0-3.14)	
			0.032*
\mathbf{B}_2	90	0.654 (0-5.44)	

Çizelge 5.17. B₀ ve B₂ örneklemlerinin Mann Whitney U testi sonuçları

 B_0 ölçümü ile B_2 ölçümü arasında önemli düzeyde farklılık bulunmuştur (p=0.032). B_2 ölçümünün ortanca değeri (0.654), B_0 ölçümünün ortanca değerinden (0.473) daha büyük olduğu tespit edilmiştir. Çizelge 5.18'de B_0 ve B_3 örneklemlerinin Mann Whitney U testi sonuçları görülmektedir.

Çizelge 5.18. B₀ ve B₃ örneklemlerinin Mann Whitney U testi sonuçları

Ölçümler	n (örneklem sayısı)	Medyan (min-max)	р
B ₀	90	0.473 (0-3.14)	0.942
B ₃	90	0.386 (0-2.64)	0.912

Bu test sonuçlarına göre elde edilen B_0 ölçümü ile B_3 ölçümü arasında önemli düzeyde farklılık bulunmamıştır (p=0.942). B_3 ölçümünün ortanca değeri (0.386), B_0 ölçümünün ortanca değerinden (0.473) daha küçük olduğu tespit edilmiştir. Sonuç olarak B grubu FV panellerin hesaplanan enerji verimlilik oranları ile medyan testi sonuçlarının uyumlu olduğu görülmektedir. Çizelge 5.19'da C_0 ve C_1 örneklemlerinin Mann Whitney U testi sonuçları görülmektedir.

Çizelge 5.19. C₀ ve C₁ örneklemlerinin Mann Whitney U testi sonuçları

Ölçümler	n (örneklem sayısı)	Medyan (min-max)	р
C ₀	150	1.036 (0-2.94)	<0.001*
C1	150	2.500 (0-7.36)	(0.001

C₀ ölçümü ile C₁ ölçümü arasında önemli düzeyde farklılık bulunmuştur (p<0.001). C₁ ölçümünün ortanca değeri (2.500), C₀ ölçümünün ortanca değerinden (1.036) daha büyük olduğu tespit edilmiştir. Çizelge 5.20'de C₀ ve C₂ örneklemlerinin Mann Whitney U testi sonuçları görülmektedir.

Ölçümler	n (örneklem	Medyan (min-max)	р
	sayısı)		
C_0	150	1.036 (0-2.94)	
			0.266
C_2	150	0,910 (0-2.78)	0.200

Çizelge 5.20. C₀ ve C₂ örneklemlerinin Mann Whitney U testi sonuçları

 C_0 ölçümü ile C_1 ölçümü arasında önemli düzeyde farklılık bulunmuştur (p=0.266). C_2 ölçümünün ortanca değeri (0.910), C_0 ölçümünün ortanca değerinden (1.036) daha küçük olduğu tespit edilmiştir. Çizelge 5.21'de C_0 ve C_3 örneklemlerinin Mann Whitney U testi sonuçları görülmektedir.

Çizelge 5.21. C₀ ve C₃ örneklemlerinin Mann Whitney U testi sonuçları

Ölçümler	n (örneklem sayısı)	Medyan (min-max)	р
C_0	150	1.036 (0-2.94)	
C ₃	150	0,867 (0-2.32)	0.008*

 C_0 ölçümü ile C_3 ölçümü arasında önemli düzeyde farklılık bulunmuştur (p=0.008). C_3 ölçümünün ortanca değeri (0.867), C_0 ölçümünün ortanca değerinden (1.036) daha küçük olduğu tespit edilmiştir. Sonuç olarak C grubu FV panellerin hesaplanan enerji verimlilik oranları ile medyan testi sonuçlarının uyumlu olduğu görülmektedir. Çizelge 5.22'de D_0 ve D_1 örneklemlerinin Mann Whitney U testi sonuçları görülmektedir.

Çizelge 5.22. D₀ ve D₁ örneklemlerinin Mann Whitney U testi sonuçları

Ölçümler	n (örneklem sayısı)	Medyan (min-max)	р
D ₀	129	1.701 (0-2.75)	
D ₁	129	3.565 (0-6.03)	<0.001*

 D_0 ölçümü ile D_1 ölçümü arasında önemli düzeyde farklılık bulunmuştur (p<0.001). D_1 ölçümünün ortanca değeri (3.565), D_0 ölçümünün ortanca değerinden (1.701) daha büyük olduğu tespit edilmiştir. Çizelge 5.23'te D_0 ve D_2 örneklemlerinin medyan testi görülmektedir.

Ölçümler	n (örneklem sayısı)	Medyan (min-max)	р
D_0	129	1.701 (0-2.75)	0.001*
D_2	129	3.420 (0-5.72)	<0.001*

Çizelge 5.23. D₀ ve D₂ örneklemlerinin Mann Whitney U testi sonuçları

 D_0 ölçümü ile D_2 ölçümü arasında önemli düzeyde farklılık bulunmuştur (p<0.001). D_2 ölçümünün ortanca değeri (3.420), D_0 ölçümünün ortanca değerinden (1.701) daha büyük olduğu tespit edilmiştir. Çizelge 5.24'te D_0 ve D_3 örneklemlerinin Mann Whitney U testi sonuçları görülmektedir.

Çizelge 5.24. D₀ ve D₃ örneklemlerinin Mann Whitney U testi sonuçları

Ölçümler	n (örneklem sayısı)	Medyan (min-max)	р
D_0	129	1.701 (0-2.75)	<0.001*
D ₃	129	2.418 (0-4.58)	<0.001

 D_0 ölçümü ile D_3 ölçümü arasında önemli düzeyde farklılık bulunmuştur (p<0.001). D_3 ölçümünün ortanca değeri (2.418), D_0 ölçümünün ortanca değerinden (1.701) daha büyük olduğu tespit edilmiştir. Sonuç olarak D grubu FV panellerin hesaplanan enerji verimlilik oranları ile medyan testi sonuçlarının uyumlu olduğu görülmektedir. Çizelge 5.25'te E_0 ve E_1 örneklemlerinin Mann Whitney U testi sonuçları görülmektedir.

Çizelge 5.25. E₀ ve E₁ örneklemlerinin Mann Whitney U testi sonuçları

Ölçümler	n (örneklem sayısı)	Medyan (min-max)	р
E ₀	116	1.428 (0-2.83)	0.010*
E_1	116	1.762 (0-4.09)	0.010

 E_0 ölçümü ile E_1 ölçümü arasında önemli düzeyde farklılık bulunmuştur (p=0.010). E_1 ölçümünün ortanca değeri (1.762), E_0 ölçümünün ortanca değerinden (1.428) daha büyük olduğu tespit edilmiştir. Çizelge 5.26'da E_0 ve E_2 örneklemlerinin Mann Whitney U testi sonuçları görülmektedir.

Ölçümler	n (örneklem sayısı)	Medyan (min-max)	р
E ₀	116	1.428 (0-2.83)	<0.001*
E_2	116	2.940 (0-5.72)	<0.001

Çizelge 5.26. E₀ ve E₂ örneklemlerinin Mann Whitney U testi sonuçları

 E_0 ölçümü ile E_2 ölçümü arasında önemli düzeyde farklılık bulunmuştur (p<0.001). E_2 ölçümünün ortanca değeri (2.940), E_0 ölçümünün ortanca değerinden (1.428) daha büyük olduğu tespit edilmiştir. Çizelge 5.27'de E_0 ve E_3 örneklemlerinin Mann Whitney U testi sonuçları görülmektedir.

Çizelge 5.27. E₀ ve E₃ örneklemlerinin Mann Whitney U testi sonuçları

Ölçümler	n (örneklem sayısı)	Medyan (min-max)	р
E ₀	116	1.428 (0-2.83)	<0.001*
E ₃	116	2.649 (0-5.34)	<0.001

 E_0 ölçümü ile E_3 ölçümü arasında önemli düzeyde farklılık bulunmuştur (p<0.001). E_3 ölçümünün ortanca değeri (2.649), E_0 ölçümünün ortanca değerinden (1.428) daha büyük olduğu tespit edilmiştir. Sonuç olarak E grubu FV panellerin hesaplanan enerji verimlilik oranları ile medyan testi sonuçlarının uyumlu olduğu görülmektedir.

6. SONUÇ VE ÖNERİLER

Bu tez çalışmasında, hazırlanan 15 adet farklı çözelti ile nanolif kaplı FV panel yüzeylerinin enerji verimliliğine olan etkisi ve kaplanan eşdeğer FV panel camların SEM-EDS, FT-IR, yüzey temas açısı ölçümü, antibakteriyel aktivite, geçirgenlik, soğurma ve yansıma analizleri karşılaştırmalı olarak incelenmiştir. İnceleme sonucunda elde edilen veriler aşağıda kısaca verilmiştir.

SEM-EDS analizi sonuçlarına göre tüm numunelerde farklı nanolif çaplarında nanolif oluşumları görülmüştür. Elementel dağılımlara göre çözeltilerde kullanılan kimyasalların kaplamadaki varlığı doğrulanmıştır.

FT-IR analizinde sadece temel çözelti olarak adlandırılan A₁ çözeltisi incelenmiştir. Çözeltiler içerisinde miktarı az olan katkı maddelerinin vermiş olduğu bantlar temel fonksiyonel piklerin altında kaldığından dolayı diğer çözeltilerin FT-IR incelemesinin yapılamamıştır. Bu nedenle FT-IR spektrumlarında diğer çözeltiler gözlenememiştir. Son olarak elde edilen A₁ çözeltisi FT-IR spektrum sonucu literatürde yapılan çalışmalar ile karşılaştırılmıştır ve temel çözeltinin varlığı doğrulanmıştır.

Yüzey temas açısı ölçüm sonuçlarına göre A₁, B₂, B₃, C₁, C₃, D₁, D₂, D₃, E₁, E₂ ve E₃ numune yüzeylerinin hidrofilik olduğu, A₂, A₃ ve B₁ ve C₂ numune yüzeylerinin ise hidrofobik olduğu tespit edilmiştir. Elde edilen sonuçlara göre kaplamaların çoğunluğunun su damlacığına karşı yüzey üzerinde hidrofilik bir etki bıraktığını söyleyebiliriz.

S.aureus ATCC 25923, *E.coli* ATCC25922 şuşlarına karşı yapılan antibakteriyel aktivitite test sonuçlarına göre A₁, A₂, C₂, C₃, D₂, D₃, E₂ ve E₃ çözeltilerinin *E. coli* ATCC 25922 bakterisine karşı diğer çözeltilerden daha etkin oldukları ve antibakteriyel etkinliği en düşük olan çözeltinin ise B₁ olduğu tespit edilmiştir. *S. aureus* ATCC 25923'un *E. coli* ATCC 25922'ye göre çalışmada kullanılan çözeltilere daha dirençli olduğu tespit edilmiştir. Sonuç olarak temel çözeltimiz olan TiO₂ esaslı A₁ çözeltisinin *E. coli* ATCC 25922 bakterisine karşı antibakteriyel aktivite etkinliğinin olduğunu ve çözeltilere katkılanan Gd ve Eu, Zn ve Ag

kimyasallarının *E. coli* ATCC 25922 bakterisine karşı antibakteriyel aktivite etkinliğini de arttırdığı görülmüştür.

A, B, C, D ve E grupları olarak adlandırılan FV panel gruplarının hiç kaplanmayan FV panel referans alınarak belirlenen ölçüm periyotlarında kaplamaların enerji verimliliğine etkileri ile ilgili elde edilen tüm veriler ışığında, B_3 ve C_2 FV panelleri dışında diğer tüm FV panellerde hiç kaplanmayan FV panellere göre daha verimli bir güç çıkışı elde edilmiştir. Çalışmada kullanılan tüm FV panellerin enerji verim oranları ortalaması Çizelge 6.1'de görüldüğü gibidir.

FV Paneller	Ölçüm Periyot Tarihleri	Enerji Verim
		Oranları (%)
A_0		0,73
A ₁		1,42
A_2	28.05.2021-09.06.2021	1,73
A_3		1,14
\mathbf{B}_0		0,794
B ₁		0,855
B ₂	10.06.2021-23.06.2021	1,17
B ₃		0,587
C_0		1,06
C_1		2,56
C_2	25.06.2021-12.07.2021	1,05
C ₃		0,84
D_0		1,494
D1	21.07.2021-06.08.2021	3,4
D_2		3,138
D ₃		2,34
E ₀		1,83
E ₁	08.08.2021-21.08.2021	2,22
E ₂		3,60
E ₃		3,18

Çizelge 6.1. Çalışmada kullanılan tüm FV panellerin enerji verim oranları ortalaması

A grubu FV panellerin ölçüm periyot süresi zarfında ölçülen enerji verimlilik oranlarına göre, en düşük enerji verim oranının yüzeyinde kaplama bulunmayan A₀ FV paneli olduğu, en yüksek güç artışının ise A₂ kaplamasının bulunduğu FV panelin olduğu görülmektedir. A₂ kaplamasının bulunduğu FV panelinde A₁ kaplamasının bulunduğu FV panelin enerji verim oranına yakın bir orandadır. A₃ kaplamasının bulunduğu FV panelin enerji verim oranınında, yüzeyinde kaplama bulunmayan A₀ FV panelin enerji verim oranınında, yüzeyinde kaplama bulunmayan A₀ FV panelin enerji verim oranına göre nispeten daha yüksek olduğu görülmektedir. A grubu numunelerin geçirgenlik ve yansıma spektrumlarını incelediğimizde, görünür bölge aralığında yapılan ölçümlerde en iyi geçirgenlik özelliği gösteren yüzeylerin A₁ ve A₂ yüzeyleri olduğu görülmektedir. Bu sonuçlara göre, A₁, A₂ ve A₃ FV panel yüzeylerinin kaplama yapılmayan FV panel yüzeyine göre güneşten gelen ışınım miktarını daha fazla hücre içerisine aktardığı düşünülmektedir. A grubu geçirgenlik ve yansıma spektrum analizleri enerji verim oranları sonuçlarını desteklemektedir.

B grubu FV panellerin ölçüm periyot süresi zarfında ölçülen enerji verimlilik ortalamalarına göre, en düşük enerji verim oranının FV panel yüzeyinde B3 kaplamalı FV paneli olduğu, en yüksek güç artışının ise yüzeyinde B₂ kaplamalı FV panelinde olduğu görülmektedir. Yüzeyinde hiç kaplama bulunmayan B₀ FV paneli ve B₂ kaplaması bulunan FV panelin ise çok yakın enerji verim oranına sahip olduğu görülmektedir. B grubu numunelerin geçirgenlik ve yansıma spektrumlarını incelediğimizde, görünür bölge aralığında yapılan ölçümlerde en iyi geçirgenlik özelliği gösteren yüzeylerin B1 ve B2 yüzeyleri olduğu, en az yansıtma özelliği gösteren yüzeyin de B₂ kaplamalı yüzey olduğu tespit edilmiştir. Bu sonuçlara göre, B₁, B₂ FV panel yüzeylerinin kaplama yapılmayan FV panel yüzeyine göre güneşten gelen ışınım miktarını daha fazla hücre içerisine aktardığı B3 numunesinin ise kaplama yapılmayan FV panel yüzeyine göre güneşten gelen ışınım miktarını daha az hücre içerisine aktardığı düşünülmektedir. Bunun sebebinin, SEM analizlerinde de görüleceği üzere B₃ yüzeyinin nanolif çap oranının diğer yüzeylere göre daha yüksek olması ve yüzey üzerinde güneş ışınımı geçirgenliğini olumsuz etkilemesinden dolayı olabileceği düşünülmektedir. B grubu geçirgenlik ve yansıma spektrum analizleri enerji verim oranları sonuçlarını desteklemektedir.

C grubu FV panellerin ölçüm periyot süresi zarfında ölçülen enerji verimlilik ortalamalarına göre, en düşük enerji verim oranının FV panel yüzeyinde C₃ kaplamalı FV paneli olduğu, en yüksek güç artışının ise yüzeyinde C₁ kaplamalı FV panelinde olduğu görülmektedir. Yüzeyinde hiç kaplama bulunmayan C₀ FV paneli ve C₂ kaplaması bulunan FV panelin ise aynı enerji verim oranına sahip olduğu görülmektedir. C grubu numunelerin geçirgenlik ve yansıma spektrumlarını incelediğimizde, görünür bölge aralığında yapılan ölçümlerde en iyi geçirgenlik özelliği gösteren yüzeylerin C₁ ve C₃ kaplamalı yüzeylerin olduğu, en az yansıtma özelliği gösteren yüzeyin de C₂ kaplamalı yüzey olduğu tespit edilmiştir. Bu sonuçlara göre, C₁ kaplamalı FV panel yüzeyinin kaplama yapılmayan FV panel içerisine aktardığı C₂ kaplamalı FV panel yüzeyinin ise kaplama yapılmayan FV panel yüzeyine göre güneşten gelen ışınım miktarını daha az hücre içerisine aktardığı düşünülmektedir. C₃ kaplamalı FV panelin enerji verim oranının kaplamasız C₀ FV panel enerji verim oranına göre daha düşük olmasının nedenlerinin, SEM analizlerinde de görüleceği üzere C₃ yüzeyinin nanolif çap oranının diğer yüzeylere göre daha yüksek olmasının yüzey üzerinde güneş ışınımı geçirgenliğini ve enerji verimlilik oranını olumsuz etkilediği ve ölçüm yapılan tarihler arasında C₃ kaplamalı FV panel yüzeyinde oluşabilecek kısmi gölgelenmenin ve FV panelin olası seri üretim bandı hatası nedeniyle farklı iç dirence bağlı güç kaybı etkisinin olabileceği düşünülmektedir. C grubunun geçirgenlik ve yansıma spektrum analizleri enerji verim oranları sonuçlarını C₃ kaplamalı yüzey dışında desteklemektedir.

D grubu FV panellerin ölçüm periyot süresi zarfında ölçülen enerji verimlilik ortalamalarına göre, en düşük enerji verim oranının FV panel yüzeyine herhangi bir kaplama yapılmayan D_0 FV panelinde olduğu, en yüksek enerji verim oranının ise D_1 kaplamalı FV panelinde olduğu görülmektedir. D_2 kaplaması bulunan FV panelinin de D_1 kaplaması bulunan FV paneline çok yakın bir enerji verim oranına sahip olduğu görülmektedir. D_3 kaplamasının bulunduğu FV panelin enerji verim oranının, yüzeyinde kaplama bulunmayan D_0 FV panelin enerji verim oranına göre nispeten daha yüksek olduğu görülmektedir. D grubu numunelerin geçirgenlik ve yansıma spektrumlarını incelediğimizde, görünür bölge aralığında yapılan ölçümlerde tüm yüzeylerin birbirlerine çok yakın geçirgenlik özelliğinin bulunduğu., en az yansıtma özelliği gösteren yüzeylerin de D_1 ve D_2 kaplamalı yüzeyler olduğu tespit edilmiştir. Bu sonuçlara göre, D_1 , D_2 ve D_3 FV panel yüzeylerinin kaplama yapılmayan FV panel yüzeyine göre güneşten gelen ışınım miktarını daha fazla hücre içerisine aktardığı düşünülmektedir. D grubu geçirgenlik ve yansıma spektrum analizleri enerji verim oranları sonuçlarını desteklemektedir.

E grubu FV panellerin ölçüm periyot süresi zarfında ölçülen enerji verimlilik ortalamalarına göre, en düşük enerji verim oranının FV panel yüzeyine herhangi bir kaplama yapılmayan E_0 FV paneli olduğu, en yüksek enerji verim oranının ise E_2 kaplamalı FV panelinde olduğu görülmektedir. E_3 kaplamalı FV panelinde E_2 kaplaması bulunan FV paneline çok yakın bir enerji verim oranına sahip olduğu görülmektedir. E grubu numunelerin geçirgenlik ve yansıma spektrumlarını incelediğimizde, görünür bölge aralığında yapılan ölçümlerde en iyi geçirgenlik özelliği gösteren yüzeyin E_3 yüzeyi ardından E_2 yüzeyi olduğu, en düşük yansıtma özelliği gösteren yüzeyin de E_3 kaplamalı yüzey olduğu tespit edilmiştir. Bu sonuçlara göre, E_1 , E_2 ve E_3 FV panel yüzeylerinin kaplama yapılmayan FV panel yüzeyine göre güneşten gelen ışınım miktarını daha fazla hücre içerisine aktardığı düşünülmektedir. E_2 ve E_3 FV panel enerji verim oranlarının benzer olmasından dolayı E grubu geçirgenlik ve yansıma spektrum analizlerinin enerji verim oranları sonuçlarını desteklediği düşünülmektedir.

Her grubun enerji verim oranlarını karşılaştırdığımızda en yüksek güç artışının A grubunda A₂, B grubunda B₂, C grubunda C₁, D grubunda D₁ ve E grubunda E₂ FV panellerinde olduğu görülmektedir. FV panel yüzeylerinde bulunan kaplamalarda Gd içeren nanolif kaplamaların Eu içeren nanolif kaplamalara göre daha fazla güç artışı sağladığı tespit edilmiştir.

Özetle tez çalışması kapsamında yapılan çalışmalar ve sonuçlar değerlendirildiğinde, alınan tüm enerji ve karakterizasyon analiz verilerine göre yüzeyler üzerinde elde edilen Gd, Eu, Zn ve Ag katkılı ve katkısız nanolif kaplamaların FV panel yüzeyine ulaşan güneş ışınımının yansıma önleyici etkisini ve geçirgenlik oranını değişkenlik gösteren oranlarda arttırdığı ve enerji verimlilik kayıplarını en aza indirerek FV panel çıkışlarında da güç artışı sağladığı görülmüştür. Ayrıca eşdeğer cam numuneler üzerinde yapılan karakterizasyon analizleriyle de yüzeylerde bulunan Gd, Eu, Zn ve Ag katkılı ve katkısız nanolif kaplamaların; fotokatalitik etkiyi arttırdığı, dış ortam etkilerine karşı daha iyi koruma sağladığı, *E.coli* bakterisine karşı farklı oranlarda antibakteriyel aktivitesinin olduğu tespit edilerek katkılı ve katkısız kaplamalı yüzey parametrelerinin kaplanmayan yüzeylere göre geliştirildiği sonucuna varılmıştır.

Elde edilen verilere göre, FV panel veri kayıt ve ölçüm periyodunun daha uzun tutulması ile çevresel faktörlere karşı kaplamaların performansının karşılaştırılması ve FV panellerde enerji verimliliğini arttırmak için farklı nadir toprak elementlerin TiO₂ esaslı çözeltiye katkılanması başlıkları önerilebilecek konu başlıkları olarak düşünülebilir.

KAYNAKLAR

- Appasamy, J.S., Kurnia, J.C., Assadi, M.K., 2020. Synthesis and Evaluation of Nitrogen-Doped Titanium Dioxide/Single Walled Carbon Nanotube-Based Hydrophilic Self-Cleaning Coating Layer for Solar Photovoltaic Panel Surface. Solar Energy, 196, 80-91.
- Arabatzis, I., Todorova, N., Fasaki, I., Tsesmeli, C., Peppas, A., Li, W.X., Zhao, Z., 2018. Photocatalytic, Self-Cleaning, Antireflective Coating for Photovoltaic Panels: Characterization and Monitoring in Real Conditions. Solar Energy, 159, 251-259.
- Basavaraju, M., Gunashree, B. S., 2022., Escherichia Coli: An Overview of Main Characteristics, Starčič Erjavec, M., (Ed.), Escherichia Coli (1-23). IntechOpen, 302p, London.
- Behnajady, M. A., Modirshahla, N., Shokri, M., Rad, B. 2008. Enhancement of Photocatalytic Activity of TiO₂ Nanoparticles by Silver Doping: Photodeposition Versus Liquid İmpregnation Methods. Global Nest Journal, 10(1), 1-7.
- Bhardwaj, N., Kundu, S.C., 2010. Electrospinning: A Fascinating Fiber Fabrication Technique. Biotechnology Advances, 28(3), 325-347.
- Bhatia A., Zahoor S., 2007. Staphylococcus Aureus Enterotoxins: A Review, Journal of Clinical and Diagnostic Research, 1(2), 188-197.
- Bozzetti, M., De Candia, G., Gallo, M., Losito, O., Mescia, L., Prudenzano, F. 2010. Analysis and Design of a Solar Rectenna. In 2010 IEEE International Symposium on Industrial Electronics, 4-7 July, Bari, Italy, 2001-2004.
- Çelen, O., 2020. Fotovoltaik (PV) Paneller İçin Fotokatalitik, Antibakteriyel ve Yansıma Önleyici Yüzey Kaplamaların Geliştirilmesi ve Karakterizasyonu. Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 62s, Afyon.
- Dai, Y., Formo, E., Li, H., Xue, J., Xia, Y., 2016. Surface-Functionalized Electrospun Titania Nanofibers for the Scavenging and Recycling of Precious Metal Ions. ChemSusChem, 9(20), 2912-2916.
- Darvishi, M., Seyed-Yazdi, J., 2016. Microwave Irradiation Synthesis of TiO₂/Graphene Nano-Hybrid Using Titanium Butoxide with Enhanced Photocatalytic Activity. Scientia Iranica F, 23(3), 1548-1553.
- Das, K., Tiwari, R.K.S., Shrivastava, D.K., 2010. Techniques for Evaluation of Medicinal Plant Products as Antimicrobial Agent: Current Methods and Future Trends, J. Med. Plant. Res., 4 (2), 104-111.

- Dener, A., 2022. Fotokatalitik Malzemelerin Güneş Paneli Verimi Üzerine Etkisi. Bingöl Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 65s, Bingöl.
- Dobrzański, L., Szindler, M., Drygała, A., Szindler, M., 2014. Silicon Solar Cells with Al₂O₃ Antireflection Coating. Open Physics, 12(9), 666-670.
- Electricalnotebook, 2023. Erişim Tarihi: 12.06.2023. https://electricalnotebook.com/i-v-characteristics-of-solar-pv-cell/
- Enerji ve Tabii Kaynaklar Bakanlığı, 2023. Güneş Enerjisi Potansiyelimiz. Erişim Tarihi: 12.01.2023. <u>https://enerji.gov.tr/eigm-yenilenebilir-enerji-kaynaklar-</u><u>gunes</u>
- Gozali C., Rukmana A., 2023. Potential of Colicin as an Antibacterial Agent in Escherichia coli, EKSAKTA Berkala Ilmiah Bidang MIPA, 24(02), 216-225.
- He, Y., Sutton, N.B., Rijnaarts, H. H., Langenhoff, A.A., 2016. Degradation of Pharmaceuticals in Wastewater Using İmmobilized TiO₂ Photocatalysis Under Simulated Solar İrradiation. Applied Catalysis B: Environmental, 182, 132-141.
- Huang, J., Liu, Y., Lu, L., Li, L., 2012. The Photocatalytic Properties of Amorphous TiO₂ Composite Films Deposited by Magnetron Sputtering. Research on Chemical Intermediates, 38, 487-498.
- Law, A.M., Bukhari, F., Jones, L.O., Isherwood, P.J., Walls, J.M., 2022. Multilayer Antireflection Coatings for Cover Glass on Silicon Solar Modules. IEEE Journal of Photovoltaics, 12(5), 1205-1210.
- Lay-Ekuakille, A., Ciaccioli, A., Griffo, G., Visconti, P., Andria, G., 2018. Effects of Dust on Photovoltaic Measurements: A Comparative Study. Measurement, 113, 181-188.
- Le Loir Y, Baron F, Gautier M., 2003. Staphylococcus Aureus and Food Poisoning, Genetics and Molecular Research, 2(1), 63-76.
- Lee, T.G., 2016. Converting Volatile Organic Compounds to CO₂ and Water. American Journal of Chemical Engineering, 4(2), 62-67.
- Louy, M., Tareq, Q., Al-Jufout, S., Alsafasfeh, Q., Wang, C., 2017. Effect of Dust on the 1-MW Photovoltaic Power Plant at Tafila Technical University. 8th International Renewable Energy Congress (IREC), 21-23 March, Amman, Jordan, 1-4.
- Mani, M., Pillai, R., 2010. Impact of Dust on Solar Photovoltaic (PV) Performance: Research Status, Challenges and Recommendations. Renewable and Sustainable Energy Reviews, 14(9), 3124-3131.

- Marimuthu, T., Anandhan, N., Thangamuthu, R., Surya, S., 2017. Facile Growth of ZnO Nanowire Arrays and Nanoneedle Arrays with Flower Structure on ZnO-TiO₂ Seed Layer for DSSC Applications, Journal of Alloys and Compounds, 693, 1011-1019.
- Moradi, S., Aberoomand-Azar, P., Raeis-Farshid, S., Abedini-Khorrami, S., Givianrad, M.H., 2016. The Effect of Different Molar Ratios of Zno on Characterization and Photocatalytic Activity of TiO₂/ZnO Nanocomposite, Journal of Saudi Chemical Society, 20(4), 373-378.
- Nasir, B., Fatima, H., Ahmed, M., Haq, I. U., 2015. Recent Trends and Methods in Antimicrobial Drug Discovery from Plant Sources, Austin J Microbiol, 1(1), 1-12.
- Noh, H.N., Myong, S.Y. 2014. Antireflective Coating Using a WO₃–TiO₂ Nanoparticle Photocatalytic Composition for High Efficiency Thin-Film Si Photovoltaic Modules. Solar Energy Materials and Solar Cells, 121, 108-113.
- Ossila, 2023. Erişim Tarihi: 12.06.2023. https://www.ossila.com/pages/the-solar-spectrum
- Parvekar, P., Palaskar, J., Metgud, S., Maria, R., Dutta, S., 2020. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Silver Nanoparticles Against Staphylococcus Aureus. Biomaterial Investigations in Dentistry, 7(1), 105-109.
- Piedra, P.G., Llanza, L.R., Moosmüller, H., 2018. Optical Losses of Photovoltaic Modules due to Mineral Dust Deposition: Experimental Measurements and Theoretical Modeling. Solar Energy, 164, 160-173.
- Piliougine, M., Carretero, J., Sidrach-de-Cardona, M., Montiel, D., Sánchez-Friera, P., 2008, Comparative Analysis of the Dust Losses in Photovoltaic Modules With Different Cover Glasses. In Proceedings of 23rd European Solar Energy Conference, 1-5 September, Valencia, Spain, 2698-2700.
- Rahal, H., Kihal, R., Affoune, A.M., Rahal, S., 2018. Electrodeposition and Characterization of Cu₂O Thin Films Using Sodium Thiosulfate as an Additive for Photovoltaic Solar Cells. Chinese Journal of Chemical Engineering, 26(2), 421-427.
- Reddy, K.R., Gomes, V.G., Hassan, M., 2014. Carbon Functionalized TiO₂ Nanofibers for High Efficiency Photocatalysis. Materials Research Express, 1(1), 015012.
- Roguska, A., Pisarek, M., Andrzejczuk, M., Lewandowska, M., 2014. Synthesis and Characterization of ZnO and Ag Nanoparticle-Loaded TiO₂ Nanotube Composite Layers Intended for Antibacterial Coatings. Thin Solid Films, 553, 173-178.

- Ruifen, W.A.N.G., Fuming, W.A.N.G., Shengli, A.N., Jinling, S.O.N.G., Zhang, Y., 2015. Y/Eu Co-Doped TiO₂: Synthesis and Photocatalytic Activities Under UV-light. Journal of Rare Earths, 33(2), 154-159.
- Sarkın, A.S., Ekren, N., Sağlam, Ş., 2020. A Review of Anti-Reflection and Self-Cleaning Coatings on Photovoltaic Panels. Solar energy, 199, 63-73.
- Sayılkan, F., 2007. Nano-TiO₂ Fotokatalizör Sentezi ve Fotokatalitik Aktivitesinin Belirlenmesi. İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 109s, Malatya.
- Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D.W., 2014. Understanding TiO₂ Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114(19), 9919-9986.
- Soklič, A., Tasbihi, M., Kete, M., Štangar, U.L., 2015. Deposition and Possible Influence of a Self-Cleaning Thin TiO₂/SiO₂ Film on a Photovoltaic Module Efficiency. Catalysis Today, 252, 54-60.
- Şahin K., Altan G., 2019. Kinolon Dirençli Escherichia Coli İzolatlarında Diğer Antibiyotiklere Direnç Oranlarının Araştırılması, J Biotechnol and Strategic Health Res., 3(3), 197-202.
- Tao, C., Zhang, L., 2020. Fabrication of Multifunctional Closed-Surface SiO₂-TiO₂ Antireflective Thin Films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, 124045.
- Wikipedia, 2023. Erişim Tarihi: 19.04.2023. https://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law
- Xu, J., Ao, Y., Fu, D., Yuan, C., 2009. Synthesis of Gd-Doped TiO₂ Nanoparticles Under Mild Condition and Their Photocatalytic Activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 334(1-3), 107-111.
- Yağan, Ş., 2014. Perilendiimid Türevlerinin Sentezi ve Antimikrobiyal Aktivitelerinin Saptanması. Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 77s, Balıkesir.
- Zabihi, O., Khayyam, H., Fox, B.L., Naebe, M., 2015. Enhanced Thermal Stability and Lifetime of Epoxy Nanocomposites Using Covalently Functionalized Clay: Experimental and Modelling, New Journal of Chemistry, 39(3), 2269-2278.
- Zhao, T., Jiang, L., 2018. Contact Angle Measurement of Natural Materials. Colloids and Surfaces B: Biointerfaces, 161, 324-330.