

• Determination of flowrate is important for effectiveness of water treatment plant

- Design for 30 years
- Population
- Industry
- School, hospital, social facilities
- Water&wash the gardens
- Cattle, sheep&goat breeding
- Hotel, restaurant
- Fire protection water

• Ülkemizde gelecekteki nüfus tahmininde İller Bankası Yönetmeliği kullanılmaktadır. Gelecekteki nüfus Ng;

 $N_g = N_s (1 + p/100)^{(tg-ts)}$

t_g: Planlanan proje yılı, t_s: Son nüfus sayım yılı p: Nüfus artış hızı (1 \leq p \leq 3)

$$p = (\sqrt[a]{\frac{Ns}{Ni}} - 1).100$$

Ns: Son nüfus sayım neticesi Ni: İlk nüfus sayım neticesi a: İki sayım arasındaki senelerin farkıdır.

Future population	<u>Water per person, L/capita-day</u>
3,000'e kadar	60
3,001-5,000	70
5,001-10,000	80
10,001-30,000	100
30,001-50,000	120
50,001-100,000	170
100,001-200,000	200
200,001-300,000	225

 \circ Q (L/day) = q₀.N

- N: Population, q₀: Flowrate
- $Q_{ort} (L/sn) = q_0 N/86400$
- \circ Q_{max} (L/sn) = 1.5.Q_{ort}
- \circ Q_{max} value calculated is for people

• Total flowrate for water treatment plant:

- $Q_{\text{Total}} = Q_{\text{max(people)}} + Q_{\text{Industry}} + Q_{\text{Animals}} + \Sigma q_{\text{Special}}$
- \circ Q_{Industry}
 - Organized industrial zone Q_{OIZ} (L/sn.hectare) = 0.5-0.85

\circ $Q_{Animals}$

- Sheeps&Goat q= 15 L/animal.day
- Cattle q= 50 L/ animal.day
- \circ $\Sigma q_{Special}$
 - Fire water
 - Ng< 10000 5 L/sn,
 - 10001<Ng<50000 10 L/sn,
 - 50001<Ng<100000 20 L/sn,

Binek otomobillerin bir defa temizlenmesi için	100310 - 2A	200-300 L
Kamvonun bir defa temizlenmesi için	1000	50 – 150 L
Okullarda bir öğrenci icin	Günde	2 – 10 L
Kıslalarda bir er icin	Günde	50 – 150 L
Kıslalarda bir at icin	Günde	60 - 100 L
Hastanelerde bir hasta icin	Günde	250 - 600 L
Otellerde bir müsteri için	Günde	100 – 250 L
Genel Yüzme havuzlarında (1m ² için)	Günde	500 L
Yangın muşlukları için saniyede (yönetmelikteki gibi)		2,5 - 5 - 10 - 20 L
Mezbahalarda her bir büyük baş hayvan için	and Mill	300 - 400 L
Mezbahalarda her bir küçük baş hayvan için	the last	150 – 300 L
Pazar verlerinin her m²'si için	Günde	3-5L
İstasvonlarda bir lokomotif için	Günde	6000 - 22000 L
Hamamlarda her bir banyo için	Günde	300 – 350 L
Camasırhanelerde 100 kg çamaşır için		40 – 80 L
1 ka vünün kumas haline getirilmesi için	and party	1000 L
100 ko seker pancarı üretimi için		1500 L
1 ka seker üretimi icin		100 – 150 L
1000 adet tuğlanın örülmesi için		750 L
1 m ³ beton hazırlanması icin		120 - 150 L
Bahce, cadde ve sokakların sulanması için m² başına	a and the same	1,5 - 2 L
Tabakhanelerde beher büvük deri icin		1000 - 3000 L

PRETREATMENT METHODS

• Purpose : To make water suitable for treatment of downward processes

• Screens

• Primary settling

• Aeration

• Prechlorination

COARSE & FINE SCREENS

PRIMARY SEDIMENTATION & AERATION

AERATION & PRE-CHLORINATION

EQUALIZATION/STORAGE BASIN INTRODUCTION

• Important from water supply of rivers!!

• Residence time is around 10 - 20 days

• Purpose

- Settling of coarse solids
- Improvement of water quality
- Equalization of flowrate
- If these tanks are not used, grit removal should be included

EQUALIZATION/STORAGE BASIN INTRODUCTION

• A treatment scheme for water having high amount of settleable solids, changeable color and clay content depending on seasons (Figure 3.1)

• These basins have some advantages & disadvantages

- Coarse solids settle
- Turbidity decreases
- Dissolved O_2 level might increase
- Hardness of water may decrease

•Hardness removal; when CO₂ is taken by algae, the reaction below turn into left and Ca²⁺ decreases

- Due to organic oxidation
 - Improvement of odor&taste
 - Decrease in BOD
 - Improvement of water color

- Decrease in number of E.coli & patogens
- Equalization of water quality
 - River water quality is highly variable by time
 - By using equalization basins, these changes can be eliminated

Şekil 3.2. Biriktirme haznelerinde konsantrasyon dengelenmesi

- The water can be used during dry seasons
- If there is any pollution disgharge into river, the water in these tanks can be used during this period
- When the pollutant load is increased in river, it help overloading of the treatment plant

DİSADVANTAGES

- Algae growth
 - Aesthetic problems
 - Taste & odor problems
 - Some metabolite (exp. comes from blue-green algae) might be toxic
 - Running time of rapid sand filters is decreased & clogging problems, frequent backwashing requirement

DİSADVANTAGES

- To eliminate algae growth
 - Control light reaching the basin (by cloasing or constructing deeper tanks)
 - Chemical addition (CuSO4, Cl2, KMnO4)
- Some pollutants can appear again
 - Organics settled at the bottom may degraded under anaerobic conditions
 - Lead taste & odor problems

Microorganism removal

• Microorganisms are reduced by 1st order kinetics;

- dn / dt = α . n

n: # of microorganism a: decrease constant (1/T) t: time (T)

ο α

- Nutrients
- Temperature
- Type of m.orgs
- Toxics

Microorganism removal

 \circ $n_t = n_0 \cdot e^{-\alpha t}$

- no initial microorganism conc
- nt microorganism conc at time t
- R= removal ratio= n_0 / n_t

 \circ R= $e^{\alpha t}$

• Thus, R depends on decrease constant & time

REACTOR TYPES & EFFECT ON R

- 4 types***
 - Batch

• $R = e^{\alpha t}$

• CSTR

 \bullet R= 1 + αt

• CSTR in series

• $R_n = (1 + \alpha T/n)^n$ (n: # of basin)

• Plug flow

• $Rx = e^{\alpha t}$

Nitrogen removal

• Nitrogen conc is reduced at the effluent of equalization basin

• This is a natural attenuation. The rate depends on

- Temperature
- Time
- Retention time: t = V/Q
 - t: time, days
 - V: volumu, m3,
 - Q: flowrate, m3/day

• Change in conc is zero order: Thus, C = Co - k.t

REFERENCES

• Su ve Atıksu Arıtımında Fiziksel Temel İşlemler

Prof Dr. Kadir Kestioğlu, Araş. Gör. Mehmet Şen 2003

• Çevre Mühendisliğinde Temel İşlemler ve Süreçler

Reynolds/Richards 2. baskı Çeviren Ülker Bakır Öğütveren

• Su Tasviyesi

Prof Dr. Veysel Eroğlu 5. baskı, 2008