$$
\text { Work }=\stackrel{\rightharpoonup}{F} \cdot \stackrel{\rightharpoonup}{d}=w
$$

work evergy $;$ kuctic E, pot E... evagy consevation.

$$
\vec{F} \cdot \stackrel{\rightharpoonup}{d} \quad \Rightarrow \quad w=F d \cos \theta
$$

$$
W=\stackrel{\rightharpoonup}{F} \cdot \stackrel{\rightharpoonup}{d}
$$

$$
\omega=r d \cos \theta
$$

$$
\left[\text { Joule }=N m=\operatorname{kg} \frac{m^{2}}{\delta^{2}}\right]
$$

et

$$
\vec{d}=\text { displacerut }=\overrightarrow{\Delta x}
$$

Lowerip the veichlt/dumbell by a person.

work dore by ung fore?

$$
W=w \vec{J} \cdot \vec{d}=w g d
$$

wosk dore by the persu?

$$
\begin{array}{rlrl}
\stackrel{\uparrow}{F} & \vec{~} & \vec{d} \\
\vec{d} \cdot: & & =F d \cos 180 \\
\vdots-: & =-F d \\
F=m g & & =-r g d
\end{array}
$$

$$
\begin{aligned}
& \vec{F}=(160 \hat{\imath}-40 \hat{\jmath}) N \quad \vec{d}=(14 \hat{\imath}+11 \hat{\jmath}) m
\end{aligned}
$$

$$
\begin{aligned}
& =1800 \mathrm{~J} \\
& \theta=? \\
& \omega=F d \cos \theta=1800 \\
& \sqrt{160^{2}+40^{2}} \sqrt{14^{2}+11^{2}} \cos \theta=1800 \quad \theta=\cos ^{-1}\left(\frac{1800}{200(18)}\right) \simeq 30^{\circ} \\
& \hat{\jmath} \circ \hat{\imath}=|\hat{\imath}||\hat{\imath}| \cos 0 \\
& 111
\end{aligned}
$$

cm NWWhank inmg=t \uparrow d
$80 \mathrm{~kg} \sim 800 \mathrm{~N} \quad \mathrm{~cm}=$ displaenct $=5 \mathrm{~cm}$

$$
w=(800)(0.05)=40 J
$$

$$
F=5000 \mathrm{~N} \quad f=3500 \mathrm{~N}
$$

$$
d=20 \mathrm{~m}
$$

$$
\begin{aligned}
W_{N} & =N(20) \cos 90^{\circ}
\end{aligned}=0 \quad \begin{aligned}
& =m g(20) \cos 90^{\circ}
\end{aligned}=0 .
$$

Kinetic evergy \& the work-energy thearem.

$$
\begin{aligned}
& \vec{d}=\vec{s}=\Delta \vec{x}=\Delta \vec{r}=\text { displacereits. } \\
& U_{f}>\text { li } \quad \sum \vec{f}>0 \quad \text { a>0 } \\
& \sum w=w_{\text {tot }}=\sum \vec{f} \cdot \vec{d}>0 \quad ; \Delta x=d
\end{aligned}
$$

$$
v_{f}^{2}=c_{i}^{2}+2 a \Delta x
$$

$$
u_{f}^{2}=u_{i}^{2}+2 \frac{\Sigma F}{m} d \Rightarrow \Sigma F d=\frac{m}{2}\left(u_{f}^{2}-u_{i}^{2}\right)
$$

$$
\underbrace{\text { Whtot }=\Delta K}_{\text {work - Kietric }}
$$

$\omega_{\text {tot }}>0 \quad \omega t_{0}+<0 \quad$-ryy theoren.

$$
\begin{aligned}
& k \equiv \frac{m v^{2}}{2} \\
& {\left[J=k g \frac{m^{2}}{\delta^{2}}\right]}
\end{aligned}
$$

$k_{f}>k_{i} \quad k_{i}>k_{f}$

$$
v_{f}>v_{i} \quad v_{i}>v_{f}
$$

$$
\begin{aligned}
& ; k \equiv \frac{w_{0} v^{2}}{2} \equiv(\operatorname{tanim}) \underset{\sim}{m b l}=\frac{m \varphi_{f}^{2}}{2}-\frac{m \mu_{i}^{2}}{2} \\
& \underset{\substack{\text { total } \\
\text { woke } \\
\text { done }}}{\substack{\text { to }}}=\Delta K
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \xrightarrow[20 \mathrm{~m}]{u_{i}=2} \underset{\substack{ \\
u_{i=i}=?}}{u_{2}} \mathrm{~F} \\
& \sum \vec{F}=500 \mathrm{~N} \hat{\imath} \\
& \sum \vec{F} \cdot \vec{d}=w_{\text {fot }} \\
& =10000 \mathrm{~J} \\
& \text { if }=14700 \mathrm{~N} \\
& m=\frac{14900}{9.8}=1500 \mathrm{~kg} \\
& \Rightarrow \frac{m \theta_{f}^{2}}{2}-\frac{m \theta_{i}^{-2}}{2}=10000 \\
& v_{f}=4.2 \mathrm{~m} / \mathrm{s} \\
& \text { ex) Hamer|Gekic } \\
& \text { [nat] aivi } \\
& F{ }_{F}^{F} \quad=\vec{F} \cdot \vec{d}=; m g \ll F \\
& -F d=m \frac{{\mu_{1}}^{2}}{2}-\frac{m c_{i}^{-2}}{2} \\
& -F d=-\frac{m l_{i}^{2}}{2} \quad F=\frac{m e_{1}^{2}}{2 d} \\
& \left.\begin{array}{l}
u_{i}=5 \mathrm{~m} / \mathrm{s} \\
m=0.01 \mathrm{~kg} \\
d=1 \mathrm{~cm}
\end{array}\right\} F=\frac{(0.01) 5^{2}}{2(0.01)}=12.5 \mathrm{~N} \\
& W=\vec{F} \cdot \stackrel{\rightharpoonup}{\Delta x}=\text { ulen } \vec{F} \text { is const. } \\
& \Delta \Delta_{x} \longrightarrow F \quad \omega<0 \\
& F \left\lvert\, \begin{array}{ll}
\cdots \frac{1}{\vdots} \\
\vdots \\
i / \sum_{i} & \\
i r e a=F \Delta x
\end{array}\right. \\
& \vec{F} ; \quad \frac{d}{d} \\
& \text { (yay) }
\end{aligned}
$$

ex)

what's the worle dore by f if satulube.

$$
W=\int_{(-)}^{\stackrel{\rightharpoonup}{F} \cdot d \stackrel{\rightharpoonup}{x}} \underset{\underset{\sim}{x}}{\text { 位 }}
$$ woves drom $r_{1}=1.5 \times 10^{11} \mathrm{~m}$

$$
\text { to } v_{2}=2.3 \times 10^{11} \mathrm{~m}
$$

$$
w<0
$$

$$
\begin{aligned}
& \quad \begin{array}{l}
\overrightarrow{d x} \hat{\imath} \\
\underset{\leftarrow}{\leftarrow} \times\left.\right|^{\hat{\imath}} \\
\left|\int_{f}\right| F d x \mid(-\hat{\imath})
\end{array} \quad-\hat{\imath} \cdot \hat{\imath}=-1
\end{aligned}
$$

$$
-\int_{i}^{0} \frac{1.3 \times 10^{11}}{x^{2}} d x
$$

$$
-1.3 \times 10^{22}\left[-\frac{1}{x}\right]_{r_{i}}=1.5 \times 10^{11}
$$

$$
F=1.3 \times 10^{22}\left[\frac{1}{2.3 \times 10^{11}}-\frac{1}{1.5 \times 10^{11}}\right]=\left[\frac{1.3}{2.3}-\frac{1.3}{1.5}\right] 10^{11}
$$

$$
w_{\text {fot }}=-3 \times 10^{11} \mathrm{~J}<0
$$

$$
w<0
$$

$$
\text { area }=+3 \times 10^{\prime \prime} \mathrm{J}
$$

$$
\begin{aligned}
& r_{2}>r_{1} \quad F_{\text {satuice }}=\frac{-1.3 \times 10^{-5}}{x^{2}} \\
& \int_{\hat{r}}^{-\frac{L 0}{}^{-. \cdot x}} \vec{F}=\frac{-1.3 \times 10^{22}}{r^{2}} \hat{r}
\end{aligned}
$$

人 k i- equolibsur position $=$ daye cham $F_{\delta}=-k x$

$$
\begin{array}{rc}
\text { HWMWH } \Rightarrow F_{s}: & F_{s}=-k x \\
\vdots & F_{s}+\hat{\imath}
\end{array}
$$

$$
\begin{array}{ll}
X_{e q}=0 & \vec{F}_{s}=-k \vec{X} \\
X_{e q}=x_{0} & \overrightarrow{F_{s}}=-k \overrightarrow{\Delta x}=-k\left(x_{f}-x_{0}\right)
\end{array}
$$

$$
|\ldots M A| H \mid \underset{\rightarrow}{d} i^{d} \ldots
$$

$$
\left.\int_{0}^{x}-k x d x=-k \frac{x^{2}}{2}\right]_{0}^{x}
$$

$\omega=-k \frac{x^{2}}{2}<0$

$$
\begin{aligned}
& { }_{j} \vec{F} \text { ! } \\
& x_{i} \quad f_{x f} \\
& w>0 \\
& \left.w=\int_{-x}^{0}-k x d x=-\frac{k x^{2}}{2}\right]_{-x}^{0}=-\left[k \frac{0^{2}}{2}-\frac{k(-x)^{2}}{2}\right] \\
& W=\left[\frac{k x^{2}}{2}-\frac{k x_{i}^{2}}{2}\right]=\frac{k x_{i}^{2}}{2}-\frac{k x_{f^{2}}^{2}}{2}\left|x_{f}\right|<\left|x_{i}\right| \\
& w=+\frac{k x^{2}}{2}>0 \\
& x_{i}=-x \quad x_{f}=0
\end{aligned}
$$

$$
\begin{aligned}
& F_{s}=-k x \\
& {\left[k=\operatorname{spinp}_{\text {const }}=\frac{N}{m}=\frac{k g m / \mathrm{s}^{2}}{m}=\frac{k g}{s^{2}}\right]}
\end{aligned}
$$

m is known \Rightarrow veasue $\underline{\underline{k}}$ sivi
M_{1} is uulknown $\quad m_{1}=\frac{k y_{1}}{g}$

$$
\begin{aligned}
& F_{s}=-k x \quad\left(x_{e q}=0\right) \\
& w_{\text {tot }}=\Delta k
\end{aligned}
$$

if orly spijy fore dos the watk

$$
\text { Whot }=w_{\text {spri }}=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2}=\Delta k=\frac{1}{2} m l_{f}^{2}-\frac{1}{2} m l_{i}^{2}
$$

位 verk byspip $=$ chape is k

$$
\begin{aligned}
\left.\|_{x+x}^{x / c_{l}} \int_{x_{i}}^{x_{f}}-k x d x=-k \frac{x^{2}}{2}\right]_{x_{i}}^{x_{f}} & =-\left[\frac{k x_{f}^{2}}{2}-\frac{k x_{i}^{2}}{2}\right] \\
& =\frac{k x_{i}^{2}}{2}-\frac{k x_{f}^{2}}{2}
\end{aligned}
$$

Power (gia)

$$
P=\frac{w o r k}{1}=\frac{W}{1}=\left[\frac{\mathrm{J}}{c}=w a t t\right] \quad 1 h_{p}=1 \text { horsepower }=746 \mathrm{~W}
$$

$$
\begin{aligned}
& P_{\text {ave }}=\frac{\text { work }}{t_{\text {ic }}}=\frac{w}{t}=\left[\frac{J}{s}=w a l t\right] \\
& P=\frac{d w}{d t} \text { (instantaveous powr) }
\end{aligned}
$$

$$
\begin{aligned}
1 \mathrm{hp}_{p}=1 \mathrm{horsepover} & =746 \mathrm{~W} \\
100 \mathrm{kp} \text { cor } & =74600 \mathrm{~W} \\
& \simeq 75 \mathrm{kw}
\end{aligned}
$$

ex) Aisbus A380 plare

$$
v=250 \mathrm{~m} / \mathrm{s}
$$

$$
1 h_{p}=746 w
$$

$$
\begin{aligned}
P & =\vec{F} \cdot \vec{v}, \quad ~ \\
& =F v \cos \hat{\beta}^{\prime} \\
& =8.05 \times 10^{7} \mathrm{~W} \\
P & =108000 \mathrm{up} \text { (plac) }
\end{aligned}
$$

ex) A 50 kg mas of summer, runs up 443 m tall tover in 15 minutes.
What's $\mathfrak{h e r}$ averge pover?

Nork-Enyzy Thorm aloug a curve path.

swinp / pendulum

$$
\begin{aligned}
& \Sigma \omega=w_{T}+w_{\text {ug }} \\
& \text { S? } \\
& \stackrel{\rightharpoonup}{T} \cdot \stackrel{\rightharpoonup}{s}=T s \cos 9_{0}{ }^{\circ}=\underline{0}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { Electric bitls (eletait foiva) }=\text { evergy }=[\text { Joule }]=100 \mathrm{kw} . \mathrm{hr}
\end{aligned}
$$

$$
\begin{aligned}
& 100 \text { looow } 3600 \mathrm{~s} \\
& 1003.6 \times 10^{6} \text { Joules } \\
& \rightarrow P=\overrightarrow{F_{2}} \frac{\overrightarrow{d x}}{d t}=\vec{F} \cdot \vec{v}=\vec{F} \cdot \vec{v}
\end{aligned}
$$

$$
\begin{aligned}
& \sum F_{y}=m a_{y} \\
& T-m g \cos \theta=m \frac{v^{2}}{R} \\
& \sum F_{x}=m a_{x}=m a_{t} \\
& m g \sin \theta=m a_{t}
\end{aligned}
$$

$$
a_{t}=g \sin \theta \left\lvert\, \quad \theta \uparrow \quad a_{t} \uparrow \quad a_{r} \downarrow \quad a_{r}=\frac{v^{2}}{R}\right.
$$

$$
\Sigma w=w_{y}+w_{N}=w_{v g}=m g y=\Delta K=\frac{1}{2} m \theta_{f}^{2}-\frac{1}{2} m d_{i}^{2}
$$

$$
W_{N}=\int \vec{N} \cdot d \vec{s} ; \vec{N} \perp \vec{d}
$$

$$
N d s \cos 90=0
$$

Block is sotatiy at a distance of 0.4 m with a speed of $0.7 \mathrm{~m} / \mathrm{s}$ If the rope is pulled from below and the new radius is $0.1 \mathrm{~m} \quad v_{\text {new }}=2.8 \mathrm{~m} / \mathrm{s} \quad m=0.09 \mathrm{~kg}$
a) what's re tension of the some initially?

$$
{\underset{1 .}{N} \rightarrow T}_{N}^{a_{r}} \quad \sum F_{x}=\max
$$

$$
\begin{aligned}
& \Sigma F_{x}=m a_{x} \\
& T=m \frac{v^{2}}{R}=(0.09)\left(\frac{0.7^{2}}{0.4}\right)=0.11 N
\end{aligned}
$$

b) What's re final tension of the vape?

$$
T=m \frac{U_{f}^{2}}{R_{f}}=0.09 \frac{2.8^{2}}{0.1}=7.04 \mathrm{~N}
$$

c) How much work is doe by the person who pulled the rope?

Top VIEW

$$
\begin{aligned}
& T_{i}=0.11 \mathrm{~N} \\
& \tau_{f}=7.04 \mathrm{~N}
\end{aligned}
$$

$$
\Sigma w=w_{\tau}^{? ?}+w_{v p}+w_{N}=\Delta K
$$

 HARD

$$
\Sigma w=w_{T}+w_{f}+w_{0}+w_{0}
$$

$$
\frac{1}{2} 0.09\left(2.8^{2}-0.7^{2}\right)=w_{T}=0.33 \text { Joules }
$$

chapter 7 Potential Energy

mass is displaced s

$$
\begin{aligned}
W_{m g} & =\vec{F} \cdot \vec{s} \\
& =m g \cdot \vec{s} \quad 0 \\
& =m g s \cos 0 \\
& =m g s
\end{aligned}
$$

$$
\begin{aligned}
& \quad N_{\text {ry }}=m \vec{g} \cdot \vec{s}=\overrightarrow{M g} . \\
& U=\text { potential } \\
& \text { everes }
\end{aligned}
$$

closer to ground.

$$
\vec{y}_{i}-\vec{y}_{f}=-\stackrel{\rightharpoonup}{s}
$$

$$
\vec{s}=\vec{y}_{f}-\vec{y}_{i}
$$

$$
\left(\vec{y}_{f}-\vec{y}_{i}\right)=\overrightarrow{m g} \cdot \stackrel{\rightharpoonup}{y}_{f}-\stackrel{\rightharpoonup}{m g} \cdot \vec{y}_{i}
$$

$$
\begin{aligned}
& \Delta=\text { potential } \\
& \text { evergy } \\
& I \equiv m g y \quad+y \uparrow \downarrow g \\
& \text { Chb } \quad \Sigma \omega=\Delta K \\
& =m g y_{f} \frac{\cos 180}{-1}-m g y_{i} \cos 180 \\
& =-m g y_{f}+m g y_{i} \\
& w_{m g}=m g y_{i}-m g y_{f} \\
& w_{v g}={J_{i}}_{0}{J_{f}}=\left\{-\Delta U=w_{v g}\right\}
\end{aligned}
$$

if oaly force (doip vork) is mg

$$
\begin{aligned}
& \Sigma W=W_{v g}=\Delta K \\
& -\Delta l=\Delta K \quad \Rightarrow \quad I_{i}-U_{f}=k_{f}-k_{i} \\
& { }^{*}\left\{\begin{aligned}
J_{i}+k_{i} & =U_{f}+k_{f} \\
\sum E_{0} & =\sum E_{f}
\end{aligned}\right\} \underbrace{k+U}_{\text {nechanical }} \equiv E \\
& \sum E_{i}=\sum E_{f} \quad \sum E_{i}=\sum E_{f} \\
& m g y_{i}+\frac{m v_{i}^{2}}{2}=m g y_{f}+\frac{m g_{f}^{2}}{2} \\
& \text { ernezy } \\
& \Sigma E_{i}=\Sigma E_{f}\left\{\Sigma w=u u_{g}\right\}
\end{aligned}
$$

If Nere are oller forces lhuen ung

$$
\begin{array}{ll}
\sum w=\Delta K \\
W_{\text {other }}+W_{m g}=\Delta K & W_{0} \text { her }+(-\Delta \Delta)=\Delta K \\
\text { othe } \equiv F, \text { frirtioval... } & w_{0} t_{0}+I_{i}+K_{i}=I_{f}+K_{f}
\end{array}
$$

$\frac{\text { grautationd }}{\text { potatial everyy }}$ aloup a curtion
for mition aloug a curved path.

$$
\begin{aligned}
& \left.\right|_{\text {and }} ^{S_{11}}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { I } & \operatorname{Df}_{\rho} \\
W_{m g} \text { is inderudent of Mo DuH }
\end{array}
$$

Worg is inderudent of Me puth !!

$$
\left\{\begin{array}{l}
w_{v g}=\stackrel{\rightharpoonup}{m g} \cdot \stackrel{\rightharpoonup}{s} \tag{i}\\
\text { 1st path }
\end{array}\right.
$$

1st path

$$
w_{i}+k_{i}=v_{f}+k_{f}
$$

$$
\theta+\frac{1}{2} m \theta_{f} 2^{2}=m g y_{f}^{T}+\frac{1}{2} m \varphi_{f}^{2}=m g y_{f+} \frac{1}{2} m \theta_{f}^{2}
$$

$$
\begin{aligned}
& \sum E_{i}=\sum E_{f} \\
& \sum w=w_{u p}+w / \lambda^{0}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma w= w_{u p}+4 / q^{0}+w_{f}=\Delta K \\
& \|^{0} \\
&-\Delta \Delta \frac{w_{f}+w_{i}+k_{i}=L_{f}+k_{f}}{w_{f}<0}
\end{aligned}
$$

other \equiv spring force (yay ksoweti)

$$
F=-k x
$$

$$
w_{F_{s}}>0
$$

$$
\begin{gathered}
U_{e l}=\underset{\substack{\text { elastic } \\
\text { potentival } \\
\text { eurgy }}}{ }=s \\
W_{e l}=\frac{1}{2} k x^{2} \\
\sum W=\Delta k
\end{gathered}
$$

$$
W_{s}=\int_{i}^{f}-k x d x=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2}
$$

$$
w_{s}=0 \quad w_{s}<0
$$

$$
w_{s}>0
$$

$$
w_{e l}=w_{s}=-\Delta I J_{e l}
$$

$$
\begin{aligned}
& \sum w=\Delta k \\
& w_{\text {up }}+w_{s}+w_{0} l e r=\Delta k \\
& \left(-\Delta L_{g}^{d}\right)+\left(-\Delta \Delta_{e l}\right)+w_{0} n e r=\Delta K \\
& m g y_{i}-m g y_{f}+\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2}+w_{0} R w_{r}=\frac{1}{2} m l_{f}^{2}-\frac{1}{2} m l_{i}^{2}
\end{aligned}
$$

$$
\text { * } \text { * }_{*}\left\{w_{0} n+V_{g, i}+k_{e l,} i+k_{1}=k_{f}+U_{e e, f}+J_{g, f}\right\}
$$

e^{x}

$$
u_{y}=\operatorname{mg} y \quad U_{e l}=\frac{1}{2} k x^{2}=\frac{1}{2} k y^{2} \ldots
$$

sprit is strectied 0.1 m mass is released $\left(v_{i}=0\right)$
no displaeniet in 4

$$
k=5 \mathrm{~N} / \mathrm{m} \quad m=0.2 \mathrm{~kg}
$$

A $2000-\mathrm{kg}(19,600-\mathrm{N})$ elevator with broken cables in a test rig is falling at $4.00 \mathrm{~m} / \mathrm{s}$ when it contacts a cushioning spring at the bottom of the shaft. The spring is intended to stop the elevator, compressing 2.00 m as it does so (Fig. 7.17). During the motion a safety clamp applies a constant $17,000-\mathrm{N}$ frictional force to the elevator. What is the necessary force constant k for the spring?
7.17 The fall of an elevator is stopped by a spring and by a constans friction force.

$$
\begin{aligned}
& \Xi_{g}=0 \quad \|_{q}=0 \quad \text { wean } x_{f}=0.08 \mathrm{~m} \quad \vartheta_{f}=\text { ? } \\
& \text { toner }=0 \quad \frac{1}{2} k x_{i}^{2}+\frac{1}{2} m \theta_{i}^{2}=\frac{1}{2} k x_{f}^{2}+{\underset{2}{2}}_{1}^{\operatorname{ma} \theta_{f}{ }^{2}, ~} \\
& !\square^{0.3 \mathrm{~m} / \mathrm{s}} \\
& +0.3 \mathrm{~m} / \mathrm{s} \longleftarrow \frac{1}{2}(5) 0.1^{2}+0=\frac{1}{2} 5(0.08)^{2}+\frac{1}{2} 0.2 u_{f}^{2} \\
& v_{7}^{2}=0.09 \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& w_{0} K_{s}+U_{g, i}+W_{e, i}+k_{i}=k_{f}+U_{e, f}+U_{g, f}
\end{aligned}
$$

7.17 The fall of an elevator is stopped by a spring and by a constans friction force.

$$
\begin{aligned}
W_{0} I V r & =\stackrel{\rightharpoonup}{f} \cdot \vec{s} \\
& =-17000(2) \\
& =-34000 \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
\log _{i} i & =m g y_{i} \\
& =19600(2) \\
& =39200 \mathrm{~J} \\
y_{f} & v_{1} f
\end{aligned}=0 \quad\left(y_{f}=0\right) .
$$

$$
\begin{array}{rlr}
K_{i} & =\frac{1}{2} m l_{i}^{2} & \text { IJel, } f=1_{2} k x_{f}^{2} \\
& =\frac{1}{2}(2000) 4^{2}=16000 \mathrm{~J} & =\frac{1}{2} k 2^{2}=2 k \\
K_{f} & =0=v_{f}=0 &
\end{array}
$$

$$
\text { Vel }_{1 i}=\frac{1}{2} k x_{i}^{2}=0
$$

$$
x_{i}=0
$$

$$
\begin{aligned}
w_{0} h w+U_{g, i} i+L_{e l, i} i+k_{i} & =k_{f}+U_{e e, f}+U_{g, f} f \\
-34000+39200+0+16000 & =0+2 k+0 \\
21200 & =2 k \\
k & =10600 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

what if there was no FRICTION?

$$
\longrightarrow 39200+16000=2 k^{\prime} \quad k^{\prime}=27600 \mathrm{~N} / \mathrm{m}
$$

Conservative (korunum LU) / energy is conserved umber the object is moved back (o initial
moved back (oinitial)
position
\rightarrow grouctatioval (Mg)
\rightarrow sprive $(-k x)$
$\rightarrow \begin{array}{r}\text { frietional } \\ \text { fores. (Ewn } \\ \text { Porce) }\end{array}$
\rightarrow electrostutic $\left(\frac{k a_{1} a_{2}}{\sqrt{2}_{2}^{2}}\right)$
(1) consercatie fore $W_{\text {ugg }}=-\Delta U_{g}$

$$
W=-\Delta I \quad W_{e l}=-\Delta W_{e l}
$$

(2) Itis reversible

(3) indepudent of path

$$
0=w_{1 \rightarrow 2}+w_{2 \rightarrow 1}
$$

(2) $W_{\operatorname{mg}}^{(1)}=w_{y}^{(2)}=w_{y \rho}^{(3)}$
(4) wilen start = end

$$
\int_{i=f}^{\square} \quad i=f
$$

$$
W_{i \rightarrow f}=0=W_{i \rightarrow i}
$$

nonconservatie force (friction)

W_{f} depud on palh

$$
w^{(2)} \neq w^{10}
$$

$$
\begin{array}{rlr}
W=-\Delta U= & F_{x} \Delta x \Rightarrow & -\Delta U=F_{x} \Delta x \\
& =F_{y} \Delta U & F_{x}=-\frac{\Delta U}{\Delta x}=-\frac{d U}{d x} \\
I J= & \\
-\frac{d U}{d x}=F_{x} & -\frac{d U}{d y}=F_{y} & -\frac{d U}{d z}=F_{z}
\end{array}
$$

$$
\begin{gathered}
F_{x}=-\frac{\partial u}{\partial x} \quad F_{y}=-\frac{\partial u}{\partial y} \quad F_{z}=-\frac{\partial u}{\partial z} \quad\left(\begin{array}{c}
\text { partval } \\
\text { derivatie) }
\end{array}\right. \\
U=5 x^{2} y \\
\frac{d u}{d x}=10 x y+5 x^{2} \frac{d y}{d x} \\
\frac{\partial u}{\partial x}=10 x y \\
I J=m g y \\
-\frac{\partial u}{\partial x}=0 \quad-\frac{\partial u}{\partial z}=0 \quad-\frac{\partial u}{\partial y}=-m g \\
-\frac{\partial u}{\partial z}=-\frac{\partial u}{\partial y}=0 \quad-m x^{2}
\end{gathered}
$$

Potansimel fonk.

- Egim o andaki kuvveti verip!!
$\vec{F}=-\nabla 川 \quad \nabla \equiv\left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right)$

$$
\begin{aligned}
U & =-\frac{A}{r} \\
\vec{F} & =-\frac{\partial}{\partial r}\left(-\frac{A}{r}\right) \hat{r} \\
& =+A \frac{\partial}{\partial r}\left(\frac{\perp}{r}\right) \\
\vec{F} & =-A \hat{r}
\end{aligned}
$$

7.45 .. A $350-\mathrm{kg}$ roller coaster starts from rest at point A and
slides down the frictionless loop-the-loop shown in Fig. P7.45.
(a) How fast is this roller coaster moving at point B ? (b) How hard
does it-press against the track at point B ? $\left\{\begin{array}{l}\boldsymbol{\omega}_{f}^{0} \\ W_{f}+E_{A}=0\end{array}\left\{\begin{array}{l}W_{B}\end{array}\right\}\right.$ only fore $\downarrow 9$
Figure P7.45 $\quad W=$ f. $v_{A}=0 \quad U_{A}+K_{A}=U_{B}+K_{B}$

$$
\begin{aligned}
& \text { What } \\
& E_{A}=E_{B} \quad \Rightarrow \quad \operatorname{syg} 25=\operatorname{tac} 12+\frac{\operatorname{lec}_{B}^{2}}{2}
\end{aligned}
$$

what's the Normal pore \&R?

$-\Delta U_{e l}$ el

$$
\Rightarrow \quad W f+\Delta_{i}+k_{i}={J_{f}+k_{f}}
$$

$$
g 13=\frac{v_{13}^{2}}{2}
$$

$$
c_{B}=\sqrt{26 \mathrm{~g}}=\underline{\underline{15.96 \mathrm{~m} / \mathrm{s}}}
$$

$$
v_{B}^{2}=26 g
$$

$$
\begin{aligned}
& N \sqrt{\Downarrow \downarrow a_{r}} \quad \downarrow \sum \vec{F}=m \vec{a} \\
& X_{1+w n}=m \cdot a r=m \vartheta_{R}^{2} \quad \Rightarrow \quad N=m v_{R}^{2}-m q
\end{aligned}
$$

Atwood machine.

(f)
$m_{1}=12 \mathrm{~kg} \quad$ whatiare the velocities
$m_{2}=4 \mathrm{~kg}$ just helve m_{y} hits the ground?

$$
h=2 m
$$

system is
released
from rest 5 Mi $_{i}=0$

7.70 .. A $3.00-\mathrm{kg}$ block is connected to two ideal horizontal springs having force constants $k_{1}=25.0 \mathrm{~N} / \mathrm{cm}$ and $k_{2}=$ $20.0 \mathrm{~N} / \mathrm{cm}$ (Fig. P7.70). The

Figure P7.70

system is initially in equilibrium on a horizontal, frictionless surface. The block is now pushed 15.0 cm to the right and released $\rightarrow v_{i}=0$ from rest. (a) What is the maximum speed of the block? Where in the motion does the maximum speed occur? (b) What is the maximum compression of spring 1 ?

$$
\begin{gathered}
E_{i}=E_{f} \\
U=\frac{1}{2} k x^{2}=U_{e l} \\
U_{1 i}+U_{2 i}+k_{j}=K_{f f}+U_{1 f}+U_{2 t}
\end{gathered}
$$

$$
\begin{aligned}
& \text { ai }=E f \\
& \begin{array}{l}
K_{1 i}+K_{2 i}+U_{1 i}+W_{2 i}=K_{1 f}+K_{2 f}+I_{1 f}+U_{2 f} \\
\sum_{0}+0+M_{1} g h \sum_{0}^{l}=\frac{m_{1} v_{f}^{2}}{2}+\frac{M_{2} Q_{f}^{2}}{2} 0+m_{2} g h
\end{array} \\
& L=\frac{1}{2} m v^{2} \\
& 1 J=m g y \\
& \frac{2(12-8)(9.8)^{2}}{12+8}=m_{f}^{2}=\frac{2\left(m_{1}-m_{2}\right) g h}{m_{1}+m_{2}} \\
& =2 a h\left\{a=\frac{\left(m_{1}-m_{2}\right)}{m_{1}+m_{2}} g\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
N \bar{F}=m \bar{a} \\
m a_{r} & \downarrow \sum+m g=m a_{r}=\frac{m v_{R}^{2}}{R} \Rightarrow N=\frac{m v_{R}^{2}}{R}-m g
\end{array} \\
& =\frac{(350)(26 \mathrm{~g})}{6}-350 \mathrm{~g} \\
& N=11433.3 \mathrm{~N}
\end{aligned}
$$

$$
\begin{align*}
& \text { mum compression of spring } 1 \text { ? } \\
& U_{1 i}+U_{2 i}+k_{j}=k_{f}+U_{1+}+U_{2 t} \\
& \frac{1}{2} k_{1} x^{2}+\frac{1}{2} k_{2} x^{2}+0=\frac{1}{2} m v_{f}^{2}+0+0 \\
& \frac{1}{2}(25) 15^{2}+\frac{1}{2}(20) 15^{-2}=\frac{1}{2} 30_{f}^{2} \\
& \sqrt{15^{2} \frac{(45)}{3}}=c_{f}=15 \sqrt{15} \mathrm{~m} / \mathrm{s}=58.1 \mathrm{~cm} / \mathrm{s} \\
& \text { (} \Rightarrow \quad \text { k' }^{\prime} \quad \square \\
& E_{\text {total }}=B_{1 f}+U_{2 f}+K_{f} \\
& k^{\prime}=k_{1}+k_{2} \\
& \begin{array}{l}
\frac{\frac{1}{2} k_{1} x_{i}^{2}+\frac{1}{2} k_{2} x_{i}^{2}+\frac{1}{2} m v_{i}^{2}}{u_{i}=0}=\frac{1}{2} k_{1} x_{f}^{2}+\frac{1}{2} k_{2} x_{f}^{2}+\frac{1}{2} m v_{f}^{2} \\
x \Rightarrow \max \quad ; v_{f}=0
\end{array} \\
& \frac{1}{2}\left(k_{1}+k_{2}\right) X_{i}^{2}=\frac{1}{2}\left(k_{1}+k_{2}\right) X_{f}{ }^{2} \Rightarrow X_{i}=X_{f}=15 \mathrm{~cm} \\
& \mu=0-5 \\
& w_{f}+E_{i}=E_{f} \\
& m=0.8 \mathrm{~kg} \\
& w_{f}+U_{i}+k_{i}^{0}=v_{f}+k_{f} \\
& k=50 \mathrm{~N} / \mathrm{m} \\
& U=\frac{1}{2} k x^{2} \tag{t}\\
& \text { max compression? } \\
& \theta_{i}=1.2 \mathrm{~m} / \mathrm{s} \\
& -f x+0+\frac{1}{2} m i^{2}=\frac{1}{2} k x^{2}+\overline{0} \\
& f=\mu \omega g g \quad 0=\frac{1}{2} k x^{2}+f x-\frac{1}{2} m i_{i}^{2} \\
& 0=A x^{2}+B \times C \\
& 0=\frac{1}{2} 50 \times 2+(0.5)(0.8)(9.8) x-\frac{1}{2}(0.8)(1.2)^{2} \\
& 25 \times 2+3.92 x-0.576=0 \\
& \times \vec{\rightarrow}=-0.25 \mathrm{~m} ? \times \omega_{f}>0 \times \\
& 20 \mathrm{~m} \quad m=35 \mathrm{gr} \\
& \text { spry is compressed } 0.12 \mathrm{~m} \\
& \text { it is released } \int v_{A}=0 \\
& \text { C mass is } 20 \mathrm{~m} \text { above than }
\end{align*}
$$

it is released $\int V_{A}=0$
C mass is 20 m above than pout @ A. $V_{c}=0$
7.63 - CP A skier starts at the top of a very large, frictionless snowball, with a $0 \sim \underbrace{\text { very }}_{\text {wis small initial speed, and }}$ skis straight down the side (Fig. P7.63). At what point does she lose contact with the snowball and fly off at a tangent? That is, at the instant she loses contact with the snowball, what angle α does a radial line from the center of the snowball to the skier make with the vertical?

$$
E_{i}=E_{f}
$$

$\operatorname{lng} R=\frac{\ln l_{f}^{2}}{2}+w \lg R \cos \alpha$

$$
\frac{U_{f}^{2}}{2}=g R-g R \cos \alpha \Rightarrow V_{f}^{2}=2 g R(1-\cos \alpha)
$$

$$
\rightarrow N
$$

$$
\lambda^{N} \quad: \quad 1<r-m a n \cos \alpha-\lambda I=m a_{r}
$$

$$
\begin{aligned}
& E=U_{e l}+U_{g}+k \\
& \frac{1}{2} k(\Delta y)^{2}+m g y+\frac{1}{2} m v^{2} \\
& E_{A}=E_{B}=E_{C} \\
& K_{A}+U_{9, A}+U_{e l,} A= \\
& k=? \quad v_{B}=\text { ? } \\
& y=0 \quad \text { (establish) } \\
& V_{c}=0
\end{aligned}
$$

$$
\begin{aligned}
& =6.86 \mathrm{~J} \\
& L=\frac{6.86 \times 2}{(0.12)^{2}}=953 \mathrm{~N} / \mathrm{m} \\
& v_{B}=\sqrt{\frac{(6.86-0.041)^{2}}{0.035}} \\
& =19.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \sum F_{x}=m g \cos \alpha-N=m a_{r} \\
& 1 \\
& 1 \quad m g \cos \alpha-N=m \frac{q^{2}}{R}
\end{aligned}
$$

$$
\begin{aligned}
& N=m g \cos \alpha-m \frac{m \theta_{f}^{2}}{R}=0(\text { we want }) \quad \nRightarrow \theta_{f}^{2}=\underset{\sim}{\ln R \cos \alpha}\{N=0
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=48.2^{\circ}
\end{aligned}
$$

