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Abstract

In this paper, the concept of logarithmic p-convex function is introduced.
Then, fundamental characterizations and some operational properties of
logarithmic p-convex functions are presented.
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1 Introduction

Convex functions are of special interest due to their nice properties regarding
optimization problems, which can be defined on n-dimensional Euclidean space
as follows:

Let f:R™ — R. f is said to be convex function if

fOx + py) < Mf(x) + pf(y) (1)

for all ,y € R and A, € [0,1] such that A4+ u = 1.

Since its emergenge on stage, the reseachers’ enthuiasm and the requirements
of novel problems in science have yielded to different kinds of convexity such as
quasi convexity, exponential convexity, B-convexity, B~ !-convexity, r-convexity,
s-convexity, p-convexity [1-12]. The logarithmic convexity is one of the most
prominent types, which is defined as the convexity of the logarithm of a function,
i.e., for a function f : R — R, f is called logarithmically convex if log f is
convex. As far as we reviewed the literature, the first appearance of this concept
goes back to studies on gamma function of Artin [13], who first used the term
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logarithmic convexity. The basic characterizations and properties of the log-
convex functions can be found in [14-18]. Among its application areas can be
counted geometric programming in optimization, structural stability issues in
thermoelasticity theory, growth theory and modelling of some inference-coupled
multiuser sytems in information theory [14,19-22].

In this paper, we introduce a novel logarithmic convexity associated with
p-convexity. Briefly, p-convexity of a function is defined on a p-convex set and
obtained by putting certain conditions on parameters A, 4 in (1). In literature,
the definition of p-convex set has been introduced quite earlier than p-convex
functions [23]. For the sake of clarification, let us recall them:

Let p € [0,1] and A be subset of the vector space X. A is said to be p-convex
if

Ar+py € A (2)
for all z,y € A and A, p € [0,1] such that AP + P = 1.

p-convex set is a generalization of convex set with some differences. From
the definition, it is trivial that a singleton is not a p-convex set but a convex
set. Furthermore, an interval of real numbers is convex set, only an interval
including zero or accepting it as boundary point can be p-convex set. In n-
dimensonal Euclidean space R", for a fixed point, a ray connecting origin to a
point represents a p-convex set.

p-Convex function is introduced in [12], which is defined as follows:

Let A be p-convex set and f: A — R. f is said to be p-convex function if

FOx 4 py) < Mf(x) + pf(y) (3)

for all z,y € R and A\, u € [0, 1] such that AP+ P = 1. To illustrate, the function
f R, — R defined by f(x) = 22 is a p-convex function [24]. Moregenerally,
using Theorem 3.15 in [12], we obtain that the function f defined by f(z) = 22"
on R, is a p-convex function for n € N*t.

It is clear that in case p = 1, p-convexity coincides with convexity. In [12],
it is stated that in case p — 0, p-convex set can be accepted as star convex
set with respect to zero and p-convex function is considered as subhomogeneous
function. The some of basic properties and characterizations of p-convex set
and functions can seen also in [12,23,25,26] and the references therein.

Various studies have been done on p-convex functions involving inequalities
[24,27,28]. Furthermore, it has been defined different functions such as quasi p-
convex and p-concave functions [29]. Definition of quasi p-convex and p-concave
functions are given below:

Let U C R"™ be a p-convex set. A function f : U — R is called quasi p-convex
function if f provides

fz + py) < max {f(z), f(y)}

for each z,y € U; A\, u > 0 such that AP + pP = 1. If the function -f is quasi
p-convex, f is called quasi p-concave function.

In this study, we introduce logarithmic p-convex (p-concave) functions and
its basic characterizations. Also, preservation of logarithmic p-convexity on



some algebraic oprations are examined. Interrelations among logarithmic p-
concave and logarithmic p-convex and quasi p-convex functions are exposed.

2 Main Results

Throughout the paper, unless otherwise stated, U C R" is a p-convex set,
Ry :=[0,400) and Ry := (0, +00).

Definition 2.1. Let f : U — Ryy. The function f is called logarithmic p-
convex (p-concave) function if the function logf is p-convex (p-concave). The
logarithmic p-convez functions are denoted by log-p-convez (log-p-concave) functions
for short.

The following theorem gives us a characterization of log-p-convex functions:

Theorem 2.2. The function f : U — Ry, is a log-p-convex function if and
only if
FO@ + py) < [f (@) [f ()"

is satisfied for all x,y € U, A\, u > 0 such that \P 4+ pP = 1.

Proof. (<:) It is clear from Definition 2.1.
(=:) Let f be a log-p-convex function, then log f is p-convex. Thus we can
obtain

(log f) (A + py) < Alogf)(x) + p(log f)(y) = log(Lf ()] *[f (y)]")

forall z,y € U and A, u > 0 such that A’ +p? = 1. This shows that f(Az+py) <
[f (@) f(y)]*, i-e., f is log-p-convex function. O

Theorem 2.3. Let f: U — Ryy. The function f is a log-p-concave function
if and only if
FO 4 py) > [F@P ()]

is satisfied for all x,y € U, A\, u > 0 such that \P + puP = 1.
Proof. The proof is similar to the proof of Theorem 2.2. O

Example 2.4. Let a € (1,00) and b € R. The function f: Ry — Ry defined
by f(x) = ab® is a log-p-conver and log-p-concave function.

One of the main properties of the convex function is that they satisfy the
Jensen inequality. The following theorem shows that log-p-convex functions also
satisfy the Jensen inequality.

Theorem 2.5. Let f : U — R be alog-p-convex function. Let x1,x9,..., %y €
U and M, Ao,y A > 0 with X] + X5 + -+ X2, = 1. Then

FOuzy 4+ Aozo + -+ M) < [F@)]M [f(@2)2 - [f(m) M.



Proof. We use induction on m. The inequality is trivially true when m = 2.
Assume that it is true when m = k, where k > 2. Now we show the validity
when m = k 4 1. Let a real number x be defined by the equation

xr = )\11’1 + )\23’]2 + ...+ )\k—Q—lxk—&-l

where z1,2,...,Tpy1 € Uand Ap, Mg, ..oy Apy1 > 0 with AP XS+ A) | =

At least one of A1, Mg, ..., Agy1 must be less than 1. Let us say A1 < 1 and
write

M AN+ AL =1
One can find A, < 1 such that A} + X5 +--- + AP = A\. Since (/\—1)7’ + (/\—2)1’ +

-+ (i—*)p = 1 and the assumption of hypothesis, we get

P etk o) < PR el - e,

By using log-p-convexity of f,

flx) = f()\ (i—ixl + i*ffz +ooe Tt ’A\*kﬂCk;) + Mer1Zk41)
< [f(REa+ %wz +F A’j wp)M - [f ()M
< [fla)Pe[fla2) ~-[f(wk+1)]““
is obtained. This completes the proof by induction. O

Theorem 2.6. Let f : U — Ry . For any x,y € U, the function ¢ : [0,1] —
Ry defined by o(N) = f(Ax + (1 — /\p)%y) is a log-p-convex function, then f
18 also a log-p-convex function.

Proof. Let z,y € U and A € [0,1]. Then

FOx+ (1= A)7y) = p(\)

P(A- 14 (1= AP)7 -0)
[ (1) p(0)] 12"
(@) )]) 7
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Theorem 2.7. (i) If the function f : U — [1,00) is a log-p-convex function,
then f is a quasi p-convex function.

(i) If the function f : U — (0,1) is a log-p-concave function, then f is a
quasi p-concave function.

Proof. (i) Let z,y € U and A,u > 0 such that A? + p” = 1. Assume that
max {f(z), f(y)} = f(), then we have

FOatuy) < [P < @) @) = [f@) < fz) = maz{f(z), f(y)}.

(#4) Quasi p-concavity of log-p-concave functions can be proved in the same
way.
O



Theorem 2.8. If the functions f; : U — Ry are log-p-convez (log-p-concave)
functions fori=1,2,--- ,m, then f = ﬁ fi is a log-p-convez (log-p-concave)
function. =

Proof. For x,y € U and A, p > 0 such that A\? + P = 1, we have

fQOx +py) = f[lfi()\x—i—uy)

IA
—z

(@) fi(w)])

=1

= [f@PFwI~.

This shows that f is a log-p-convex function.
It can be proved in the same way for the log-p-concave functions. O

Theorem 2.9. f: U — R,y is a log-p-convez function if and only zf% s a
log-p-concave function.

Proof. (=) : Let 2,y € U and A, u > 0 such that A\? + u? = 1. Then we get

[N R SN P
(f)()\ + 1y) FOw + ) 2 HORGOE [(f)( )] [(f)(y)] :
(<) : Let ¢,y € U and A, u > 0 such that AP + u? = 1. Then we can write
1 1 1
(POt m) = ) = FoPTr

Thus, we obtain

FOz+py) < [f@)Pf )"
0

By using Theorem 2.8 and Theorem 2.9 it can be obtained the following
corollaries:
Corollary 2.10. Let f,g : U — Ryy. If f is a log-p-convex (log-p-concave)
function and g is a log-p-concave (log-p-convex) function, then % is a log-p-

convez (log-p-concave) function.

Corollary 2.11. Let f; : U — Ryy forie {1,2,...,m} and g; : U — Ry for

je{1,2,....k}. If f; is a log-p-convex (log-p-concave) function and g; is a log-
ﬁ fi

p-concave (log-p-convex) function, then “+— is a log-p-convex (log-p-concave)

IT 95
j=1
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Theorem 2.12. Let f : U — Ry and o > 0. If f is a log-p-convex (log-p-
concave) function, then f* is a log-p-convex (log-p-concave) function.

Proof. Let a >0, z,y € U and A, u > 0 such that \? + p? = 1.
Let f be a log-p-convex function. Then we get

(f) O + py) = [fOa + ) < ([F@)PF@I) = [(F) @) @)1

The proof for log-p-concave functions is similar. O

Theorem 2.13. Let f : U — Ryy and a < 0. If f is a log-p-convex (log-p-
concave) function, then f< is a log-p-concave (log-p-convez) function.

Proof. Let a < 0, x,y € U and A, p > 0 such that AP + pu? = 1. Let f be a
log-p-convex function. Using f* = (%)_O‘, Theorem 2.9 and Theorem 2.12.(ii)
we obtain that f® is a log-p-concave function .

The proof for log-p-concave functions is similar. O

By using Theorem 2.8 and Theorem 2.12 it can be obtained the following
corollary.

Corollary 2.14. Let f; : U = R, fori e {1,2,....,m}.
(i) Let o > 0. If f; is a log-p-convex (log-p-concave) function for all i €
{1,2,...,m}, then [] f& is a log-p-convex (log-p-concave) function.
i=1
(i) Let o < 0. If f; is a log-p-convex (log-p-concave) function for all i €
{1,2,...,m}, then [] f& is a log-p-concave (log-p-convex) function.
i=1

Theorem 2.15. Let f: U — R, .

(i) If f is a log-p-convez function, then the function af is log-p-convex for
all o € 10, 1].

(i) If f is a log-p-concave function, then the function af is log-p-concave
foralla > 1.

Proof. (i) Let z,y € U, a € [0,1] and A, u > 0 such that A? 4+ p? = 1. Then we
get

(af) Az + py) = af (Az + py)
alf (@) f ()
<04A+“[ F@)Pfw)]*
= [(@f) @) [(af) )"
(74) The proof is similar to (i). O

Theorem 2.16. Let f, : U — R, be a log-p-convex function for all n € NT,
If the functions f,, converge pointwise to the function f:U — Ry then f is a
log-p-convex function.



Proof. Let z,y € U and A, pu > 0 such that AP + 7 = 1. Then we have
fQr+py) = lim fo(Az + py)
< lim ([ (@) [fa()]")
T [ (@) - T [ ()]
= [lim fo(2)]*-[lim fo(y))
= [f@P )
0

Theorem 2.17. Let 0 € U. If f : U — R4 is a log-p-convex function, then

(1) f(0) <1,
(ii) f(\z) < [f(z)]* for all X € [0,1].

Proof. Let A, u > 0 such that \? + p? = 1.
(i) We can write

F(0) = f(AO + p0) < [fO)M[F(0)]* = [f(0)]}**.

Taking logarithm of both sides we have logf(0) < (A + p)logf(0). Then we get
logf(O)[1 = (A + )] <0, ie., f(0) <1.
(i) Using f(0) < 1, we can write

FQz) = fAz + p0) < [f(@)[fFO0)]* < [f(2)]*.

This property is equivalent to be starshaped of a log-p-convex function.
O

It is known that the sum of logarithmic convex functions is also logarithmic
convex [18]. Next example shows that the sum of log-p-convex functions is not
necessarily log-p-convex. This fact shows a difference between log-p-convexity
and log-convexity.

Example 2.18. Although the function f : R — Ry, defined by f(x) = e is
log-p-convex, f+ f = 2f is not log-p-convex. Since (f+ f)(0) =2f(0) =2 > 1,
using Theorem 2.17 (i) we get that 2f is not log-p-convez.

The following example shows that the composition of log-p-convex functions
is not necessarily log-p-convex.

Example 2.19. Let us consider the function f : R — R, defined by f(x) = .
Since (f o £)(0) = e > 1, using Theorem 2.17 (i) we obtain that f o f is not
log-p-convex.

Theorem 2.20. Let f : U — Ry, be a p-convex (p-concave) function and
g : f(U) = Ry be a nondecreasing log-p-convex (log-p-concave) function.
Then go f: U — Ry, is a log-p-convex (log-p-concave).



Proof. Let x,y € U and A, p > 0 such that A\? + P = 1. Then we get

FOr + py))

M (x) +pnf(y))
(FNMg(fFy)-

go [)(@)]*(g o f)y)]*.

For a log-p-concave function g and a p-concave function f, the log-p-concavity
of g o f is established in a similar way. O

(go f)Az + py)

VAN VAT
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Different log-p-convex functions can be obtained by using Theorem 2.20.
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Example 2.21. For f(z) = 22 and g(x) = €® we can obtain that (gof)(x) = e®
18 log-p-convex function.

Theorem 2.22. Let f : U — Ry, be a p-convex (p-concave) function and
g : f(U) = Ryy be a nonincreasing log-p-concave (log-p-convez) function.
Then go f: U — Ry, is a log-p-concave (log-p-conver).

Proof. Let x,y € U and A, u > 0 such that AP + yP = 1. Then we get

fQAz + py))

M () + pf(y))
(FNMg(Fy)"

go f)@)] Mg )]

For a log-p-convex function g and a p-concave function f, the log-p-concavity
of g o f is established in a similar way. O

(go f)(Az + py)

VIVl
22

—~a

Definition 2.23. Let U C R. The function f : U — R4y is called multiplicatively
log-p-convex if

F@y") < [f (@) f ()"
for all x,y € U and for all A\, u > 0 such that \P + puP = 1.

Theorem 2.24. Let f : U — Ry be a log-p-convez function and g : f(U) —
R4+ be a nondecreasing multiplicatively log-p-convex function. Then go f :
U — Ry is alog-p-conver.

Proof. Let x,y € U and A, u > 0 such that AP + uP = 1. Then we get

(go f)(Ax+py) = g(f Az +py)) < g(Lf @)MFWI") < [(go £)@)] M(go £)(m)]*
0

Theorem 2.25. Let f : U — Ry, a > 0 and a # 1. af is a log-p-convex
(log-p-concave) function if and only if a > 1 and f is a p-convex (p-concave)
function, or 0 < a <1 and f is a p-concave (p-convex) function.



Proof. (=) : Let z,y € U and A\, u > 0 such that A’ + pu? = 1. For a > 1, then
we can write from log-p-convexity of a/

(af)()\x + py) = of Ar+ry) < [af(w)]k[af(y)]u — M@ +ufly)
From a > 1 we obtain f(Ax + py) < Af(z) + uf(y).
For 0 < a < 1, we can obtain p-concavity of f.

(<) : This aspect of the proof can be obtained using similar considerations.
The rest of the proof can be done similarly. O

Lemma 2.26. If f : U — R is p-convez then f — 1 is p-convez.
Proof. Let x,y € U and A, p > 0 such that A\? + P = 1. Then we get

(f=DAz+py) =fAr+py) -1
SM(x) + pf(y) — (A + )
=Af(z) = 1) +pu(fly) — 1)
= Mf = D(@) + p(f = ().

O

Lemma 2.27. If the function f% : U — R is p-convex function for eachn € NT
then the function n(f% — 1) is a p-convex function.

Proof. Let n € NT, 2,y € U and A\, > 0 such that A’ + y? = 1. Then we
obtain

(n(f* =)+ py) =n(fr - DOz +py)
<n(A(f7 = D(2) + p(f» = 1)())
= A(n(f* — D)) + p(n(f+ —1))(y).

O

Lemma 2.28. Let f,, : U — R be p-convez for all n € NT. If the functions f,
converge pointwise to the function f then f is p-convex.

Proof. Let x,y € U and A, u > 0 such that A? + p? = 1. Then we have

fOw +py) = lim fo(Az + py)
< lim (Ao (@) + ufa(y)
=X lim f,(2) +p lim fu(y)
=M () + pf(y).
O

Using the above three lemmas, the following important theorem is obtained.

Theorem 2.29. Let f: U — Ry,. If f% is p-convex for all m € Nt then f is
log-p-convew.



Proof. Let f% be p-convex for all n € NT. From Lemma, 2.26, f% —1is p-convex
1
for all n € NT. Using Lemma 2.27, we have that g, = n(f= — 1) is p-convex
for all n € N*. From Lemma 2.28, lim g, = logf is p-convex. Hence f is
n—oo

log-p-convex.

O
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