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Abstract

In this paper, the concept of logarithmic p-convex function is introduced.
Then, fundamental characterizations and some operational properties of
logarithmic p-convex functions are presented.
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1 Introduction

Convex functions are of special interest due to their nice properties regarding
optimization problems, which can be defined on n-dimensional Euclidean space
as follows:

Let f : Rn → R. f is said to be convex function if

f(λx+ µy) ≤ λf(x) + µf(y) (1)

for all x, y ∈ R and λ, µ ∈ [0, 1] such that λ+ µ = 1.
Since its emergenge on stage, the reseachers’ enthuiasm and the requirements

of novel problems in science have yielded to different kinds of convexity such as
quasi convexity, exponential convexity, B-convexity, B−1-convexity, r-convexity,
s-convexity, p-convexity [1–12]. The logarithmic convexity is one of the most
prominent types, which is defined as the convexity of the logarithm of a function,
i.e., for a function f : R → R, f is called logarithmically convex if log f is
convex. As far as we reviewed the literature, the first appearance of this concept
goes back to studies on gamma function of Artin [13], who first used the term
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logarithmic convexity. The basic characterizations and properties of the log-
convex functions can be found in [14–18]. Among its application areas can be
counted geometric programming in optimization, structural stability issues in
thermoelasticity theory, growth theory and modelling of some inference-coupled
multiuser sytems in information theory [14,19–22].

In this paper, we introduce a novel logarithmic convexity associated with
p-convexity. Briefly, p-convexity of a function is defined on a p-convex set and
obtained by putting certain conditions on parameters λ, µ in (1). In literature,
the definition of p-convex set has been introduced quite earlier than p-convex
functions [23]. For the sake of clarification, let us recall them:

Let p ∈ [0, 1] and A be subset of the vector space X. A is said to be p-convex
if

λx+ µy ∈ A (2)

for all x, y ∈ A and λ, µ ∈ [0, 1] such that λp + µp = 1.
p-convex set is a generalization of convex set with some differences. From

the definition, it is trivial that a singleton is not a p-convex set but a convex
set. Furthermore, an interval of real numbers is convex set, only an interval
including zero or accepting it as boundary point can be p-convex set. In n-
dimensonal Euclidean space Rn, for a fixed point, a ray connecting origin to a
point represents a p-convex set.

p-Convex function is introduced in [12], which is defined as follows:
Let A be p-convex set and f : A → R. f is said to be p-convex function if

f(λx+ µy) ≤ λf(x) + µf(y) (3)

for all x, y ∈ R and λ, µ ∈ [0, 1] such that λp+µp = 1. To illustrate, the function
f : R+ → R defined by f(x) = x2 is a p-convex function [24]. Moregenerally,
using Theorem 3.15 in [12], we obtain that the function f defined by f(x) = x2n

on R+ is a p-convex function for n ∈ N+.
It is clear that in case p = 1, p-convexity coincides with convexity. In [12],

it is stated that in case p → 0, p-convex set can be accepted as star convex
set with respect to zero and p-convex function is considered as subhomogeneous
function. The some of basic properties and characterizations of p-convex set
and functions can seen also in [12,23,25,26] and the references therein.

Various studies have been done on p-convex functions involving inequalities
[24,27,28]. Furthermore, it has been defined different functions such as quasi p-
convex and p-concave functions [29]. Definition of quasi p-convex and p-concave
functions are given below:

Let U ⊆ Rn be a p-convex set. A function f : U → R is called quasi p-convex
function if f provides

f(λx+ µy) ≤ max {f(x), f(y)}

for each x, y ∈ U ; λ, µ ≥ 0 such that λp + µp = 1. If the function -f is quasi
p-convex, f is called quasi p-concave function.

In this study, we introduce logarithmic p-convex (p-concave) functions and
its basic characterizations. Also, preservation of logarithmic p-convexity on

2



some algebraic oprations are examined. Interrelations among logarithmic p-
concave and logarithmic p-convex and quasi p-convex functions are exposed.

2 Main Results

Throughout the paper, unless otherwise stated, U ⊆ Rn is a p-convex set,
R+ := [0,+∞) and R++ := (0,+∞).

Definition 2.1. Let f : U → R++. The function f is called logarithmic p-
convex (p-concave) function if the function logf is p-convex (p-concave). The
logarithmic p-convex functions are denoted by log-p-convex (log-p-concave) functions
for short.

The following theorem gives us a characterization of log-p-convex functions:

Theorem 2.2. The function f : U → R++ is a log-p-convex function if and
only if

f(λx+ µy) ≤ [f(x)]λ[f(y)]µ

is satisfied for all x, y ∈ U , λ, µ ≥ 0 such that λp + µp = 1.

Proof. (⇐:) It is clear from Definition 2.1.
(⇒:) Let f be a log-p-convex function, then log f is p-convex. Thus we can

obtain

(logf)(λx+ µy) ≤ λ(logf)(x) + µ(logf)(y) = log([f(x)]λ[f(y)]µ)

for all x, y ∈ U and λ, µ ≥ 0 such that λp+µp = 1. This shows that f(λx+µy) ≤
[f(x)]λ[f(y)]µ, i.e., f is log-p-convex function.

Theorem 2.3. Let f : U → R++. The function f is a log-p-concave function
if and only if

f(λx+ µy) ≥ [f(x)]λ[f(y)]µ

is satisfied for all x, y ∈ U , λ, µ ≥ 0 such that λp + µp = 1.

Proof. The proof is similar to the proof of Theorem 2.2.

Example 2.4. Let a ∈ (1,∞) and b ∈ R. The function f : R+ → R++ defined
by f(x) = abx is a log-p-convex and log-p-concave function.

One of the main properties of the convex function is that they satisfy the
Jensen inequality. The following theorem shows that log-p-convex functions also
satisfy the Jensen inequality.

Theorem 2.5. Let f : U → R++ be a log-p-convex function. Let x1, x2, . . . , xm ∈
U and λ1, λ2, . . . , λm ≥ 0 with λp

1 + λp
2 + · · ·+ λp

m = 1. Then

f (λ1x1 + λ2x2 + · · ·+ λmxm) ≤ [f(x1)]
λ1 [f(x2)]

λ2 · · · [f(xm)]λm .
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Proof. We use induction on m. The inequality is trivially true when m = 2.
Assume that it is true when m = k, where k > 2. Now we show the validity
when m = k + 1. Let a real number x be defined by the equation

x = λ1x1 + λ2x2 + . . .+ λk+1xk+1

where x1, x2, . . . , xk+1 ∈ U and λ1, λ2, . . . , λk+1 ≥ 0 with λp
1+λp

2+· · ·+λp
k+1 = 1.

At least one of λ1, λ2, . . . , λk+1 must be less than 1. Let us say λk+1 < 1 and
write

λp
1 + λp

2 + · · ·+ λp
k = 1− λp

k+1.

One can find λ∗ < 1 such that λp
1 + λp

2 + · · ·+ λp
k = λp

∗. Since (λ1

λ∗
)p + (λ2

λ∗
)p +

· · ·+ (λk

λ∗
)p = 1 and the assumption of hypothesis, we get

f

(
λ1

λ∗
x1 +

λ2

λ∗
x2 + · · ·+ λk

λ∗
xk

)
≤ [f(x1)]

λ1
λ∗ [f(x2)]

λ2
λ∗ · · · [f(xk)]

λk
λ∗ .

By using log-p-convexity of f ,

f(x) = f(λ∗(
λ1

λ∗
x1 +

λ2

λ∗
x2 + · · ·+ λk

λ∗
xk) + λk+1xk+1)

≤ [f(λ1

λ∗
x1 +

λ2

λ∗
x2 + · · ·+ λk

λ∗
xk)]

λ∗ · [f(xk+1)]
λk+1

≤ [f(x1)]
λ1 [f(x2)]

λ2 · · · [f(xk+1)]
λk+1

is obtained. This completes the proof by induction.

Theorem 2.6. Let f : U → R++. For any x, y ∈ U, the function φ : [0, 1] →
R++ defined by φ(λ) = f(λx + (1 − λp)

1
p y) is a log-p-convex function, then f

is also a log-p-convex function.

Proof. Let x, y ∈ U and λ ∈ [0, 1]. Then

f(λx+ (1− λp)
1
p y) = φ(λ) = φ(λ · 1 + (1− λp)

1
p · 0)

≤ [φ(1)]λ[φ(0)](1−λp)
1
p

= [f(x)]λ[f(y)](1−λp)
1
p
.

Theorem 2.7. (i) If the function f : U → [1,∞) is a log-p-convex function,
then f is a quasi p-convex function.

(ii) If the function f : U → (0, 1) is a log-p-concave function, then f is a
quasi p-concave function.

Proof. (i) Let x, y ∈ U and λ, µ ≥ 0 such that λp + µp = 1. Assume that
max {f(x), f(y)} = f(x), then we have

f(λx+µy) ≤ [f(x)]λ[f(y)]µ ≤ [f(x)]λ[f(x)]µ = [f(x)]λ+µ ≤ f(x) = max{f(x), f(y)}.

(ii) Quasi p-concavity of log-p-concave functions can be proved in the same
way.
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Theorem 2.8. If the functions fi : U → R++ are log-p-convex (log-p-concave)

functions for i = 1, 2, · · · ,m, then f =
m∏
i=1

fi is a log-p-convex (log-p-concave)

function.

Proof. For x, y ∈ U and λ, µ ≥ 0 such that λp + µp = 1, we have

f(λx+ µy) =
m∏
i=1

fi(λx+ µy)

≤
m∏
i=1

(
[fi(x)]

λ[fi(y)]
µ
)

= [
m∏
i=1

fi(x)]
λ[

m∏
i=1

fi(y)]
µ

= [f(x)]λ[f(y)]µ.

This shows that f is a log-p-convex function.
It can be proved in the same way for the log-p-concave functions.

Theorem 2.9. f : U → R++ is a log-p-convex function if and only if 1
f is a

log-p-concave function.

Proof. (⇒) : Let x, y ∈ U and λ, µ ≥ 0 such that λp + µp = 1. Then we get

(
1

f
)(λx+ µy) =

1

f(λx+ µy)
≥ 1

[f(x)]λ[f(y)]µ
= [(

1

f
)(x)]λ[(

1

f
)(y)]µ.

(⇐) : Let x, y ∈ U and λ, µ ≥ 0 such that λp + µp = 1. Then we can write

(
1

f
)(λx+ µy) =

1

f(λx+ µy)
≥ 1

[f(x)]λ[f(y)]µ
.

Thus, we obtain
f(λx+ µy) ≤ [f(x)]λ[f(y)]µ.

By using Theorem 2.8 and Theorem 2.9 it can be obtained the following
corollaries:

Corollary 2.10. Let f, g : U → R++. If f is a log-p-convex (log-p-concave)
function and g is a log-p-concave (log-p-convex) function, then f

g is a log-p-

convex (log-p-concave) function.

Corollary 2.11. Let fi : U → R++ for i ∈ {1, 2, ...,m} and gj : U → R++ for
j ∈ {1, 2, ..., k}. If fi is a log-p-convex (log-p-concave) function and gj is a log-

p-concave (log-p-convex) function, then

m∏
i=1

fi

k∏
j=1

gj

is a log-p-convex (log-p-concave)

function.
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Theorem 2.12. Let f : U → R++ and α > 0. If f is a log-p-convex (log-p-
concave) function, then fα is a log-p-convex (log-p-concave) function.

Proof. Let α > 0, x, y ∈ U and λ, µ ≥ 0 such that λp + µp = 1.
Let f be a log-p-convex function. Then we get

(fα)(λx+ µy) = [f(λx+ µy)]α ≤ ([f(x)]λ[f(y)]µ)α = [(fα)(x)]λ[(fα)(y)]µ.

The proof for log-p-concave functions is similar.

Theorem 2.13. Let f : U → R++ and α < 0. If f is a log-p-convex (log-p-
concave) function, then fα is a log-p-concave (log-p-convex) function.

Proof. Let α < 0, x, y ∈ U and λ, µ ≥ 0 such that λp + µp = 1. Let f be a
log-p-convex function. Using fα = ( 1f )

−α, Theorem 2.9 and Theorem 2.12.(ii)
we obtain that fα is a log-p-concave function .

The proof for log-p-concave functions is similar.

By using Theorem 2.8 and Theorem 2.12 it can be obtained the following
corollary.

Corollary 2.14. Let fi : U → R++ for i ∈ {1, 2, ...,m}.
(i) Let α > 0. If fi is a log-p-convex (log-p-concave) function for all i ∈

{1, 2, ...,m}, then
m∏
i=1

fα
i is a log-p-convex (log-p-concave) function.

(ii) Let α < 0. If fi is a log-p-convex (log-p-concave) function for all i ∈
{1, 2, ...,m}, then

m∏
i=1

fα
i is a log-p-concave (log-p-convex) function.

Theorem 2.15. Let f : U → R++.
(i) If f is a log-p-convex function, then the function αf is log-p-convex for

all α ∈ [0, 1].
(ii) If f is a log-p-concave function, then the function αf is log-p-concave

for all α ≥ 1.

Proof. (i) Let x, y ∈ U , α ∈ [0, 1] and λ, µ ≥ 0 such that λp + µp = 1. Then we
get

(αf)(λx+ µy) = αf(λx+ µy)
≤ α[f(x)]λ[f(y)]µ

≤ αλ+µ[f(x)]λ[f(y)]µ

= [(αf)(x)]λ[(αf)(y)]µ.

(ii) The proof is similar to (i).

Theorem 2.16. Let fn : U → R++ be a log-p-convex function for all n ∈ N+.
If the functions fn converge pointwise to the function f : U → R++ then f is a
log-p-convex function.
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Proof. Let x, y ∈ U and λ, µ ≥ 0 such that λp + µp = 1. Then we have

f(λx+ µy) = lim
n→∞

fn(λx+ µy)

≤ lim
n→∞

([fn(x)]
λ[fn(y)]

µ)

= lim
n→∞

[fn(x)]
λ · lim

n→∞
[fn(y)]

µ

= [ lim
n→∞

fn(x)]
λ · [ lim

n→∞
fn(y)]

µ

= [f(x)]λ[f(y)]µ.

Theorem 2.17. Let 0 ∈ U . If f : U → R++ is a log-p-convex function, then
(i) f(0) ≤ 1,
(ii) f(λx) ≤ [f(x)]λ for all λ ∈ [0, 1].

Proof. Let λ, µ ≥ 0 such that λp + µp = 1.
(i) We can write

f(0) = f(λ0 + µ0) ≤ [f(0)]λ[f(0)]µ = [f(0)]λ+µ.

Taking logarithm of both sides we have logf(0) ≤ (λ+ µ)logf(0). Then we get
logf(0)[1− (λ+ µ)] ≤ 0, i.e., f(0) ≤ 1.

(ii) Using f(0) ≤ 1, we can write

f(λx) = f(λx+ µ0) ≤ [f(x)]λ[f(0)]µ ≤ [f(x)]λ.

This property is equivalent to be starshaped of a log-p-convex function.

It is known that the sum of logarithmic convex functions is also logarithmic
convex [18]. Next example shows that the sum of log-p-convex functions is not
necessarily log-p-convex. This fact shows a difference between log-p-convexity
and log-convexity.

Example 2.18. Although the function f : R → R++ defined by f(x) = ex is
log-p-convex, f +f = 2f is not log-p-convex. Since (f +f)(0) = 2f(0) = 2 > 1,
using Theorem 2.17 (ii) we get that 2f is not log-p-convex.

The following example shows that the composition of log-p-convex functions
is not necessarily log-p-convex.

Example 2.19. Let us consider the function f : R → R++ defined by f(x) = ex.
Since (f ◦ f)(0) = e > 1, using Theorem 2.17 (i) we obtain that f ◦ f is not
log-p-convex.

Theorem 2.20. Let f : U → R++ be a p-convex (p-concave) function and
g : f(U) → R++ be a nondecreasing log-p-convex (log-p-concave) function.
Then g ◦ f : U → R++ is a log-p-convex (log-p-concave).
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Proof. Let x, y ∈ U and λ, µ ≥ 0 such that λp + µp = 1. Then we get

(g ◦ f)(λx+ µy) = g(f(λx+ µy))
≤ g(λf(x) + µf(y))
≤ [g(f(x))]λ[g(f(y))]µ

= [(g ◦ f)(x)]λ[(g ◦ f)(y)]µ.

For a log-p-concave function g and a p-concave function f , the log-p-concavity
of g ◦ f is established in a similar way.

Different log-p-convex functions can be obtained by using Theorem 2.20.

Example 2.21. For f(x) = x2 and g(x) = ex we can obtain that (g◦f)(x) = ex
2

is log-p-convex function.

Theorem 2.22. Let f : U → R++ be a p-convex (p-concave) function and
g : f(U) → R++ be a nonincreasing log-p-concave (log-p-convex) function.
Then g ◦ f : U → R++ is a log-p-concave (log-p-convex).

Proof. Let x, y ∈ U and λ, µ ≥ 0 such that λp + µp = 1. Then we get

(g ◦ f)(λx+ µy) = g(f(λx+ µy))
≥ g(λf(x) + µf(y))
≥ [g(f(x))]λ[g(f(y))]µ

= [(g ◦ f)(x)]λ[(g ◦ f)(y)]µ.

For a log-p-convex function g and a p-concave function f , the log-p-concavity
of g ◦ f is established in a similar way.

Definition 2.23. Let U ⊆ R. The function f : U → R++ is called multiplicatively
log-p-convex if

f(xλyµ) ≤ [f(x)]λ[f(y)]µ

for all x, y ∈ U and for all λ, µ ≥ 0 such that λp + µp = 1.

Theorem 2.24. Let f : U → R++ be a log-p-convex function and g : f(U) →
R++ be a nondecreasing multiplicatively log-p-convex function. Then g ◦ f :
U → R++ is a log-p-convex.

Proof. Let x, y ∈ U and λ, µ ≥ 0 such that λp + µp = 1. Then we get

(g ◦f)(λx+µy) = g(f(λx+µy)) ≤ g([f(x)]λ[f(y)]µ) ≤ [(g ◦f)(x)]λ[(g ◦f)(y)]µ.

Theorem 2.25. Let f : U → R++, a > 0 and a ̸= 1. af is a log-p-convex
(log-p-concave) function if and only if a > 1 and f is a p-convex (p-concave)
function, or 0 < a < 1 and f is a p-concave (p-convex) function.
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Proof. (⇒) : Let x, y ∈ U and λ, µ ≥ 0 such that λp + µp = 1. For a > 1, then
we can write from log-p-convexity of af

(af )(λx+ µy) = af(λx+µy) ≤ [af(x)]λ[af(y)]µ = aλf(x)+µf(y).

From a > 1 we obtain f(λx+ µy) ≤ λf(x) + µf(y).
For 0 < a < 1, we can obtain p-concavity of f .
(⇐) : This aspect of the proof can be obtained using similar considerations.
The rest of the proof can be done similarly.

Lemma 2.26. If f : U → R is p-convex then f − 1 is p-convex.

Proof. Let x, y ∈ U and λ, µ ≥ 0 such that λp + µp = 1. Then we get

(f − 1)(λx+ µy) = f(λx+ µy)− 1
≤ λf(x) + µf(y)− (λ+ µ)
= λ(f(x)− 1) + µ(f(y)− 1)
= λ(f − 1)(x) + µ(f − 1)(y).

Lemma 2.27. If the function f
1
n : U → R is p-convex function for each n ∈ N+

then the function n(f
1
n − 1) is a p-convex function.

Proof. Let n ∈ N+, x, y ∈ U and λ, µ ≥ 0 such that λp + µp = 1. Then we
obtain

(n(f
1
n − 1))(λx+ µy) = n(f

1
n − 1)(λx+ µy)

≤ n(λ(f
1
n − 1)(x) + µ(f

1
n − 1)(y))

= λ(n(f
1
n − 1))(x) + µ(n(f

1
n − 1))(y).

Lemma 2.28. Let fn : U → R be p-convex for all n ∈ N+. If the functions fn
converge pointwise to the function f then f is p-convex.

Proof. Let x, y ∈ U and λ, µ ≥ 0 such that λp + µp = 1. Then we have

f(λx+ µy) = lim
n→∞

fn(λx+ µy)

≤ lim
n→∞

(λfn(x) + µfn(y))

= λ lim
n→∞

fn(x) + µ lim
n→∞

fn(y)

= λf(x) + µf(y).

Using the above three lemmas, the following important theorem is obtained.

Theorem 2.29. Let f : U → R++. If f
1
n is p-convex for all n ∈ N+, then f is

log-p-convex.
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Proof. Let f
1
n be p-convex for all n ∈ N+. From Lemma 2.26, f

1
n −1 is p-convex

for all n ∈ N+. Using Lemma 2.27, we have that gn = n(f
1
n − 1) is p-convex

for all n ∈ N+. From Lemma 2.28, lim
n→∞

gn = logf is p-convex. Hence f is

log-p-convex.
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