Logarithmic p-Convex Functions and Some of Their Properties

Gültekin Tınaztepe, Sevda Sezer, Zeynep Eken \ddagger Gabil Adilov ${ }^{\S}$

October 13, 2021

Abstract

In this paper, the concept of logarithmic p-convex function is introduced. Then, fundamental characterizations and some operational properties of logarithmic p-convex functions are presented.

Keywords: Convex Function, p-Convex Function, Logarithmic p-Convex Function

AMS Subject Classification: 26A51, 26B25

1 Introduction

Convex functions are of special interest due to their nice properties regarding optimization problems, which can be defined on n-dimensional Euclidean space as follows:

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} . f$ is said to be convex function if

$$
\begin{equation*}
f(\lambda x+\mu y) \leq \lambda f(x)+\mu f(y) \tag{1}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$ and $\lambda, \mu \in[0,1]$ such that $\lambda+\mu=1$.
Since its emergenge on stage, the reseachers' enthuiasm and the requirements of novel problems in science have yielded to different kinds of convexity such as quasi convexity, exponential convexity, B-convexity, B^{-1}-convexity, r-convexity, s-convexity, p-convexity [1-12]. The logarithmic convexity is one of the most prominent types, which is defined as the convexity of the logarithm of a function, i.e., for a function $f: \mathbb{R} \rightarrow \mathbb{R}, f$ is called logarithmically convex if $\log f$ is convex. As far as we reviewed the literature, the first appearance of this concept goes back to studies on gamma function of Artin [13], who first used the term

[^0]logarithmic convexity. The basic characterizations and properties of the logconvex functions can be found in [14-18]. Among its application areas can be counted geometric programming in optimization, structural stability issues in thermoelasticity theory, growth theory and modelling of some inference-coupled multiuser sytems in information theory [14,19-22].

In this paper, we introduce a novel logarithmic convexity associated with p-convexity. Briefly, p-convexity of a function is defined on a p-convex set and obtained by putting certain conditions on parameters λ, μ in (1). In literature, the definition of p-convex set has been introduced quite earlier than p-convex functions [23]. For the sake of clarification, let us recall them:

Let $p \in[0,1]$ and A be subset of the vector space X. A is said to be p-convex if

$$
\begin{equation*}
\lambda x+\mu y \in A \tag{2}
\end{equation*}
$$

for all $x, y \in A$ and $\lambda, \mu \in[0,1]$ such that $\lambda^{p}+\mu^{p}=1$.
p-convex set is a generalization of convex set with some differences. From the definition, it is trivial that a singleton is not a p-convex set but a convex set. Furthermore, an interval of real numbers is convex set, only an interval including zero or accepting it as boundary point can be p-convex set. In n dimensonal Euclidean space \mathbb{R}^{n}, for a fixed point, a ray connecting origin to a point represents a p-convex set.
p-Convex function is introduced in [12], which is defined as follows:
Let A be p-convex set and $f: A \rightarrow \mathbb{R}$. f is said to be p-convex function if

$$
\begin{equation*}
f(\lambda x+\mu y) \leq \lambda f(x)+\mu f(y) \tag{3}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$ and $\lambda, \mu \in[0,1]$ such that $\lambda^{p}+\mu^{p}=1$. To illustrate, the function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is a p-convex function [24]. Moregenerally, using Theorem 3.15 in [12], we obtain that the function f defined by $f(x)=x^{2^{n}}$ on \mathbb{R}_{+}is a p-convex function for $n \in \mathbb{N}^{+}$.

It is clear that in case $p=1, p$-convexity coincides with convexity. In [12], it is stated that in case $p \rightarrow 0, p$-convex set can be accepted as star convex set with respect to zero and p-convex function is considered as subhomogeneous function. The some of basic properties and characterizations of p-convex set and functions can seen also in $[12,23,25,26]$ and the references therein.

Various studies have been done on p-convex functions involving inequalities [24,27,28]. Furthermore, it has been defined different functions such as quasi p convex and p-concave functions [29]. Definition of quasi p-convex and p-concave functions are given below:

Let $U \subseteq \mathbb{R}^{n}$ be a p-convex set. A function $f: U \rightarrow \mathbb{R}$ is called quasi p-convex function if f provides

$$
f(\lambda x+\mu y) \leq \max \{f(x), f(y)\}
$$

for each $x, y \in U ; \lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. If the function $-f$ is quasi p-convex, f is called quasi p-concave function.

In this study, we introduce logarithmic p-convex (p-concave) functions and its basic characterizations. Also, preservation of logarithmic p-convexity on
some algebraic oprations are examined. Interrelations among logarithmic p concave and logarithmic p-convex and quasi p-convex functions are exposed.

2 Main Results

Throughout the paper, unless otherwise stated, $U \subseteq \mathbb{R}^{n}$ is a p-convex set, $\mathbb{R}_{+}:=[0,+\infty)$ and $\mathbb{R}_{++}:=(0,+\infty)$.

Definition 2.1. Let $f: U \rightarrow \mathbb{R}_{++}$. The function f is called logarithmic p convex (p-concave) function if the function logf is p-convex (p-concave). The logarithmic p-convex functions are denoted by log-p-convex (log-p-concave) functions for short.

The following theorem gives us a characterization of log-p-convex functions:
Theorem 2.2. The function $f: U \rightarrow \mathbb{R}_{++}$is a log-p-convex function if and only if

$$
f(\lambda x+\mu y) \leq[f(x)]^{\lambda}[f(y)]^{\mu}
$$

is satisfied for all $x, y \in U, \lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$.
Proof. (\Leftarrow :) It is clear from Definition 2.1.
$(\Rightarrow$:) Let f be a \log - p-convex function, then $\log f$ is p-convex. Thus we can obtain

$$
(\log f)(\lambda x+\mu y) \leq \lambda(\log f)(x)+\mu(\log f)(y)=\log \left([f(x)]^{\lambda}[f(y)]^{\mu}\right)
$$

for all $x, y \in U$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. This shows that $f(\lambda x+\mu y) \leq$ $[f(x)]^{\lambda}[f(y)]^{\mu}$, i.e., f is log-p-convex function.

Theorem 2.3. Let $f: U \rightarrow \mathbb{R}_{++}$. The function f is a log-p-concave function if and only if

$$
f(\lambda x+\mu y) \geq[f(x)]^{\lambda}[f(y)]^{\mu}
$$

is satisfied for all $x, y \in U, \lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$.
Proof. The proof is similar to the proof of Theorem 2.2.
Example 2.4. Let $a \in(1, \infty)$ and $b \in \mathbb{R}$. The function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{++}$defined by $f(x)=a^{b x}$ is a log-p-convex and log-p-concave function.

One of the main properties of the convex function is that they satisfy the Jensen inequality. The following theorem shows that log-p-convex functions also satisfy the Jensen inequality.

Theorem 2.5. Let $f: U \rightarrow \mathbb{R}_{++}$be a log-p-convex function. Let $x_{1}, x_{2}, \ldots, x_{m} \in$ U and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \geq 0$ with $\lambda_{1}^{p}+\lambda_{2}^{p}+\cdots+\lambda_{m}^{p}=1$. Then

$$
f\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{m} x_{m}\right) \leq\left[f\left(x_{1}\right)\right]^{\lambda_{1}}\left[f\left(x_{2}\right)\right]^{\lambda_{2}} \cdots\left[f\left(x_{m}\right)\right]^{\lambda_{m}}
$$

Proof. We use induction on m. The inequality is trivially true when $m=2$. Assume that it is true when $m=k$, where $k>2$. Now we show the validity when $m=k+1$. Let a real number x be defined by the equation

$$
x=\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots+\lambda_{k+1} x_{k+1}
$$

where $x_{1}, x_{2}, \ldots, x_{k+1} \in U$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k+1} \geq 0$ with $\lambda_{1}^{p}+\lambda_{2}^{p}+\cdots+\lambda_{k+1}^{p}=1$. At least one of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k+1}$ must be less than 1 . Let us say $\lambda_{k+1}<1$ and write

$$
\lambda_{1}^{p}+\lambda_{2}^{p}+\cdots+\lambda_{k}^{p}=1-\lambda_{k+1}^{p} .
$$

One can find $\lambda_{*}<1$ such that $\lambda_{1}^{p}+\lambda_{2}^{p}+\cdots+\lambda_{k}^{p}=\lambda_{*}^{p}$. Since $\left(\frac{\lambda_{1}}{\lambda_{*}}\right)^{p}+\left(\frac{\lambda_{2}}{\lambda_{*}}\right)^{p}+$ $\cdots+\left(\frac{\lambda_{k}}{\lambda_{*}}\right)^{p}=1$ and the assumption of hypothesis, we get

$$
f\left(\frac{\lambda_{1}}{\lambda_{*}} x_{1}+\frac{\lambda_{2}}{\lambda_{*}} x_{2}+\cdots+\frac{\lambda_{k}}{\lambda_{*}} x_{k}\right) \leq\left[f\left(x_{1}\right)\right]^{\frac{\lambda_{1}}{\lambda_{*}}}\left[f\left(x_{2}\right)\right]^{\frac{\lambda_{2}}{\lambda_{*}}} \cdots\left[f\left(x_{k}\right)\right]^{\frac{\lambda_{k}}{\lambda_{*}}}
$$

By using log-p-convexity of f,

$$
\begin{aligned}
f(x) & =f\left(\lambda_{*}\left(\frac{\lambda_{1}}{\lambda_{*}} x_{1}+\frac{\lambda_{2}}{\lambda_{*}} x_{2}+\cdots+\frac{\lambda_{k}}{\lambda_{*}} x_{k}\right)+\lambda_{k+1} x_{k+1}\right) \\
& \leq\left[f\left(\frac{\lambda_{1}}{\lambda_{*}} x_{1}+\frac{\lambda_{2}}{\lambda_{*}} x_{2}+\cdots+\frac{\lambda_{k}}{\lambda_{*}} x_{k}\right)\right]^{\lambda_{*}} \cdot\left[f\left(x_{k+1}\right)\right]^{\lambda_{k+1}} \\
& \leq\left[f\left(x_{1}\right)\right]^{\lambda_{1}}\left[f\left(x_{2}\right)\right]^{\lambda_{2}} \cdots\left[f\left(x_{k+1}\right)\right]^{\lambda_{k+1}}
\end{aligned}
$$

is obtained. This completes the proof by induction.
Theorem 2.6. Let $f: U \rightarrow \mathbb{R}_{++}$. For any $x, y \in U$, the function $\varphi:[0,1] \rightarrow$ \mathbb{R}_{++}defined by $\varphi(\lambda)=f\left(\lambda x+\left(1-\lambda^{p}\right)^{\frac{1}{p}} y\right)$ is a log-p-convex function, then f is also a log-p-convex function.
Proof. Let $x, y \in U$ and $\lambda \in[0,1]$. Then

$$
\begin{aligned}
f\left(\lambda x+\left(1-\lambda^{p}\right)^{\frac{1}{p}} y\right)=\varphi(\lambda) & =\varphi\left(\lambda \cdot 1+\left(1-\lambda^{p}\right)^{\frac{1}{p}} \cdot 0\right) \\
& \leq[\varphi(1)]^{\lambda}[\varphi(0)]^{\left(1-\lambda^{p}\right)^{\frac{1}{p}}} \\
& =[f(x)]^{\lambda}[f(y)]^{\left(1-\lambda^{p}\right)^{\frac{1}{p}}}
\end{aligned}
$$

Theorem 2.7. (i) If the function $f: U \rightarrow[1, \infty)$ is a log-p-convex function, then f is a quasi p-convex function.
(ii) If the function $f: U \rightarrow(0,1)$ is a log-p-concave function, then f is a quasi p-concave function.

Proof. (i) Let $x, y \in U$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. Assume that $\max \{f(x), f(y)\}=f(x)$, then we have
$f(\lambda x+\mu y) \leq[f(x)]^{\lambda}[f(y)]^{\mu} \leq[f(x)]^{\lambda}[f(x)]^{\mu}=[f(x)]^{\lambda+\mu} \leq f(x)=\max \{f(x), f(y)\}$.
(ii) Quasi p-concavity of log-p-concave functions can be proved in the same way.

Theorem 2.8. If the functions $f_{i}: U \rightarrow \mathbb{R}_{++}$are log-p-convex (log-p-concave) functions for $i=1,2, \cdots, m$, then $f=\prod_{i=1}^{m} f_{i}$ is a log-p-convex (log-p-concave) function.
Proof. For $x, y \in U$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$, we have

$$
\begin{aligned}
f(\lambda x+\mu y) & =\prod_{i=1}^{m} f_{i}(\lambda x+\mu y) \\
& \leq \prod_{i=1}^{m}\left(\left[f_{i}(x)\right]^{\lambda}\left[f_{i}(y)\right]^{\mu}\right) \\
& =\left[\prod_{i=1}^{m} f_{i}(x)\right]^{\lambda}\left[\prod_{i=1}^{m} f_{i}(y)\right]^{\mu} \\
& =[f(x)]^{\lambda}[f(y)]^{\mu}
\end{aligned}
$$

This shows that f is a log-p-convex function.
It can be proved in the same way for the \log - p-concave functions.
Theorem 2.9. $f: U \rightarrow \mathbb{R}_{++}$is a log-p-convex function if and only if $\frac{1}{f}$ is a log-p-concave function.

Proof. (\Rightarrow) : Let $x, y \in U$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. Then we get

$$
\left(\frac{1}{f}\right)(\lambda x+\mu y)=\frac{1}{f(\lambda x+\mu y)} \geq \frac{1}{[f(x)]^{\lambda}[f(y)]^{\mu}}=\left[\left(\frac{1}{f}\right)(x)\right]^{\lambda}\left[\left(\frac{1}{f}\right)(y)\right]^{\mu}
$$

$(\Leftarrow):$ Let $x, y \in U$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. Then we can write

$$
\left(\frac{1}{f}\right)(\lambda x+\mu y)=\frac{1}{f(\lambda x+\mu y)} \geq \frac{1}{[f(x)]^{\lambda}[f(y)]^{\mu}}
$$

Thus, we obtain

$$
f(\lambda x+\mu y) \leq[f(x)]^{\lambda}[f(y)]^{\mu}
$$

By using Theorem 2.8 and Theorem 2.9 it can be obtained the following corollaries:
Corollary 2.10. Let $f, g: U \rightarrow \mathbb{R}_{++}$. If f is a log-p-convex (log-p-concave) function and g is a log-p-concave (log-p-convex) function, then $\frac{f}{g}$ is a log-pconvex (log-p-concave) function.
Corollary 2.11. Let $f_{i}: U \rightarrow \mathbb{R}_{++}$for $i \in\{1,2, \ldots, m\}$ and $g_{j}: U \rightarrow \mathbb{R}_{++}$for $j \in\{1,2, \ldots, k\}$. If f_{i} is a log-p-convex (log-p-concave) function and g_{j} is a log-p-concave (log-p-convex) function, then $\frac{\prod_{i=1}^{m} f_{i}}{\prod_{j=1}^{k} g_{j}}$ is a log-p-convex (log-p-concave) function.

Theorem 2.12. Let $f: U \rightarrow \mathbb{R}_{++}$and $\alpha>0$. If f is a log-p-convex (log-pconcave) function, then f^{α} is a log-p-convex (log-p-concave) function.

Proof. Let $\alpha>0, x, y \in U$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$.
Let f be a log-p-convex function. Then we get

$$
\left(f^{\alpha}\right)(\lambda x+\mu y)=[f(\lambda x+\mu y)]^{\alpha} \leq\left([f(x)]^{\lambda}[f(y)]^{\mu}\right)^{\alpha}=\left[\left(f^{\alpha}\right)(x)\right]^{\lambda}\left[\left(f^{\alpha}\right)(y)\right]^{\mu}
$$

The proof for $l o g-p$-concave functions is similar.
Theorem 2.13. Let $f: U \rightarrow \mathbb{R}_{++}$and $\alpha<0$. If f is a log-p-convex (log-pconcave) function, then f^{α} is a log-p-concave (log-p-convex) function.

Proof. Let $\alpha<0, x, y \in U$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. Let f be a log-p-convex function. Using $f^{\alpha}=\left(\frac{1}{f}\right)^{-\alpha}$, Theorem 2.9 and Theorem 2.12.(ii) we obtain that f^{α} is a \log - p-concave function.

The proof for $l o g-p$-concave functions is similar.
By using Theorem 2.8 and Theorem 2.12 it can be obtained the following corollary.

Corollary 2.14. Let $f_{i}: U \rightarrow \mathbb{R}_{++}$for $i \in\{1,2, \ldots, m\}$.
(i) Let $\alpha>0$. If f_{i} is a log-p-convex (log-p-concave) function for all $i \in$ $\{1,2, \ldots, m\}$, then $\prod_{i=1}^{m} f_{i}^{\alpha}$ is a log-p-convex (log-p-concave) function.
(ii) Let $\alpha<0$. If f_{i} is a log-p-convex (log-p-concave) function for all $i \in$ $\{1,2, \ldots, m\}$, then $\prod_{i=1}^{m} f_{i}^{\alpha}$ is a log-p-concave (log-p-convex) function.

Theorem 2.15. Let $f: U \rightarrow \mathbb{R}_{++}$.
(i) If f is a log-p-convex function, then the function αf is log-p-convex for all $\alpha \in[0,1]$.
(ii) If f is a log-p-concave function, then the function αf is log-p-concave for all $\alpha \geq 1$.

Proof. (i) Let $x, y \in U, \alpha \in[0,1]$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. Then we get

$$
\begin{aligned}
(\alpha f)(\lambda x+\mu y) & =\alpha f(\lambda x+\mu y) \\
& \leq \alpha[f(x)]^{\lambda}[f(y)]^{\mu} \\
& \leq \alpha^{\lambda+\mu}[f(x)]^{\lambda}[f(y)]^{\mu} \\
& =[(\alpha f)(x)]^{\lambda}[(\alpha f)(y)]^{\mu} .
\end{aligned}
$$

(ii) The proof is similar to (i).

Theorem 2.16. Let $f_{n}: U \rightarrow \mathbb{R}_{++}$be a log-p-convex function for all $n \in \mathbb{N}^{+}$. If the functions f_{n} converge pointwise to the function $f: U \rightarrow \mathbb{R}_{++}$then f is a log-p-convex function.

Proof. Let $x, y \in U$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. Then we have

$$
\begin{aligned}
f(\lambda x+\mu y) & =\lim _{n \rightarrow \infty} f_{n}(\lambda x+\mu y) \\
& \leq \lim _{n \rightarrow \infty}\left(\left[f_{n}(x)\right]^{\lambda}\left[f_{n}(y)\right]^{\mu}\right) \\
& =\lim _{n \rightarrow \infty}\left[f_{n}(x)\right]^{\lambda} \cdot \lim _{n \rightarrow \infty}\left[f_{n}(y)\right]^{\mu} \\
& =\left[\lim _{n \rightarrow \infty} f_{n}(x)\right]^{\lambda} \cdot\left[\lim _{n \rightarrow \infty} f_{n}(y)\right]^{\mu} \\
& =[f(x)]^{\lambda}[f(y)]^{\mu} .
\end{aligned}
$$

Theorem 2.17. Let $0 \in U$. If $f: U \rightarrow \mathbb{R}_{++}$is a log-p-convex function, then
(i) $f(0) \leq 1$,
(ii) $f(\lambda x) \leq[f(x)]^{\lambda}$ for all $\lambda \in[0,1]$.

Proof. Let $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$.
(i) We can write

$$
f(0)=f(\lambda 0+\mu 0) \leq[f(0)]^{\lambda}[f(0)]^{\mu}=[f(0)]^{\lambda+\mu} .
$$

Taking logarithm of both sides we have $\log f(0) \leq(\lambda+\mu) \log f(0)$. Then we get $\log f(0)[1-(\lambda+\mu)] \leq 0$, i.e., $f(0) \leq 1$.
(ii) Using $f(0) \leq 1$, we can write

$$
f(\lambda x)=f(\lambda x+\mu 0) \leq[f(x)]^{\lambda}[f(0)]^{\mu} \leq[f(x)]^{\lambda} .
$$

This property is equivalent to be starshaped of a log-p-convex function.

It is known that the sum of logarithmic convex functions is also logarithmic convex [18]. Next example shows that the sum of log-p-convex functions is not necessarily log-p-convex. This fact shows a difference between log-p-convexity and log-convexity.

Example 2.18. Although the function $f: \mathbb{R} \rightarrow \mathbb{R}_{++}$defined by $f(x)=e^{x}$ is log-p-convex, $f+f=2 f$ is not log-p-convex. Since $(f+f)(0)=2 f(0)=2>1$, using Theorem 2.17 (ii) we get that $2 f$ is not log-p-convex.

The following example shows that the composition of log-p-convex functions is not necessarily log-p-convex.

Example 2.19. Let us consider the function $f: \mathbb{R} \rightarrow \mathbb{R}_{++}$defined by $f(x)=e^{x}$. Since $(f \circ f)(0)=e>1$, using Theorem 2.17 (i) we obtain that $f \circ f$ is not log-p-convex.

Theorem 2.20. Let $f: U \rightarrow \mathbb{R}_{++}$be a p-convex (p-concave) function and $g: f(U) \rightarrow \mathbb{R}_{++}$be a nondecreasing log-p-convex (log-p-concave) function. Then $g \circ f: U \rightarrow \mathbb{R}_{++}$is a log-p-convex (log-p-concave).

Proof. Let $x, y \in U$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. Then we get

$$
\begin{aligned}
(g \circ f)(\lambda x+\mu y) & =g(f(\lambda x+\mu y)) \\
& \leq g(\lambda f(x)+\mu f(y)) \\
& \leq[g(f(x))]^{\lambda}[g(f(y))]^{\mu} \\
& =[(g \circ f)(x)]^{\lambda}[(g \circ f)(y)]^{\mu} .
\end{aligned}
$$

For a $\log -p$-concave function g and a p-concave function f, the \log - p-concavity of $g \circ f$ is established in a similar way.

Different log-p-convex functions can be obtained by using Theorem 2.20.
Example 2.21. For $f(x)=x^{2}$ and $g(x)=e^{x}$ we can obtain that $(g \circ f)(x)=e^{x^{2}}$ is log-p-convex function.

Theorem 2.22. Let $f: U \rightarrow \mathbb{R}_{++}$be a p-convex (p-concave) function and $g: f(U) \rightarrow \mathbb{R}_{++}$be a nonincreasing log-p-concave (log-p-convex) function. Then $g \circ f: U \rightarrow \mathbb{R}_{++}$is a log-p-concave (log-p-convex).

Proof. Let $x, y \in U$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. Then we get

$$
\begin{aligned}
(g \circ f)(\lambda x+\mu y) & =g(f(\lambda x+\mu y)) \\
& \geq g(\lambda f(x)+\mu f(y)) \\
& \geq[g(f(x))]^{\lambda}[g(f(y))]^{\mu} \\
& =[(g \circ f)(x)]^{\lambda}[(g \circ f)(y)]^{\mu} .
\end{aligned}
$$

For a $l o g$ - p-convex function g and a p-concave function f, the $l o g$ - p-concavity of $g \circ f$ is established in a similar way.

Definition 2.23. Let $U \subseteq \mathbb{R}$. The function $f: U \rightarrow \mathbb{R}_{++}$is called multiplicatively log-p-convex if

$$
f\left(x^{\lambda} y^{\mu}\right) \leq[f(x)]^{\lambda}[f(y)]^{\mu}
$$

for all $x, y \in U$ and for all $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$.
Theorem 2.24. Let $f: U \rightarrow \mathbb{R}_{++}$be a log-p-convex function and $g: f(U) \rightarrow$ \mathbb{R}_{++}be a nondecreasing multiplicatively log-p-convex function. Then $g \circ f$: $U \rightarrow \mathbb{R}_{++}$is a log-p-convex.

Proof. Let $x, y \in U$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. Then we get
$(g \circ f)(\lambda x+\mu y)=g(f(\lambda x+\mu y)) \leq g\left([f(x)]^{\lambda}[f(y)]^{\mu}\right) \leq[(g \circ f)(x)]^{\lambda}[(g \circ f)(y)]^{\mu}$.

Theorem 2.25. Let $f: U \rightarrow \mathbb{R}_{++}, a>0$ and $a \neq 1$. a a^{f} is a log-p-convex (log-p-concave) function if and only if $a>1$ and f is a p-convex (p-concave) function, or $0<a<1$ and f is a p-concave (p-convex) function.

Proof. (\Rightarrow) : Let $x, y \in U$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. For $a>1$, then we can write from log-p-convexity of a^{f}

$$
\left(a^{f}\right)(\lambda x+\mu y)=a^{f(\lambda x+\mu y)} \leq\left[a^{f(x)}\right]^{\lambda}\left[a^{f(y)}\right]^{\mu}=a^{\lambda f(x)+\mu f(y)} .
$$

From $a>1$ we obtain $f(\lambda x+\mu y) \leq \lambda f(x)+\mu f(y)$.
For $0<a<1$, we can obtain p-concavity of f.
(\Leftarrow) : This aspect of the proof can be obtained using similar considerations. The rest of the proof can be done similarly.

Lemma 2.26. If $f: U \rightarrow \mathbb{R}$ is p-convex then $f-1$ is p-convex.
Proof. Let $x, y \in U$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. Then we get

$$
\begin{aligned}
(f-1)(\lambda x+\mu y) & =f(\lambda x+\mu y)-1 \\
& \leq \lambda f(x)+\mu f(y)-(\lambda+\mu) \\
& =\lambda(f(x)-1)+\mu(f(y)-1) \\
& =\lambda(f-1)(x)+\mu(f-1)(y) .
\end{aligned}
$$

Lemma 2.27. If the function $f^{\frac{1}{n}}: U \rightarrow \mathbb{R}$ is p-convex function for each $n \in \mathbb{N}^{+}$ then the function $n\left(f^{\frac{1}{n}}-1\right)$ is a p-convex function.

Proof. Let $n \in \mathbb{N}^{+}, x, y \in U$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. Then we obtain

$$
\begin{aligned}
\left(n\left(f^{\frac{1}{n}}-1\right)\right)(\lambda x+\mu y) & =n\left(f^{\frac{1}{n}}-1\right)(\lambda x+\mu y) \\
& \leq n\left(\lambda\left(f^{\frac{1}{n}}-1\right)(x)+\mu\left(f^{\frac{1}{n}}-1\right)(y)\right) \\
& =\lambda\left(n\left(f^{\frac{1}{n}}-1\right)\right)(x)+\mu\left(n\left(f^{\frac{1}{n}}-1\right)\right)(y)
\end{aligned}
$$

Lemma 2.28. Let $f_{n}: U \rightarrow \mathbb{R}$ be p-convex for all $n \in \mathbb{N}^{+}$. If the functions f_{n} converge pointwise to the function f then f is p-convex.

Proof. Let $x, y \in U$ and $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. Then we have

$$
\begin{aligned}
f(\lambda x+\mu y) & =\lim _{n \rightarrow \infty} f_{n}(\lambda x+\mu y) \\
& \leq \lim _{n \rightarrow \infty}\left(\lambda f_{n}(x)+\mu f_{n}(y)\right) \\
& =\lambda \lim _{n \rightarrow \infty} f_{n}(x)+\mu \lim _{n \rightarrow \infty} f_{n}(y) \\
& =\lambda f(x)+\mu f(y) .
\end{aligned}
$$

Using the above three lemmas, the following important theorem is obtained.
Theorem 2.29. Let $f: U \rightarrow \mathbb{R}_{++}$. If $f^{\frac{1}{n}}$ is p-convex for all $n \in \mathbb{N}^{+}$, then f is log-p-convex.

Proof. Let $f^{\frac{1}{n}}$ be p-convex for all $n \in \mathbb{N}^{+}$. From Lemma 2.26, $f^{\frac{1}{n}}-1$ is p-convex for all $n \in \mathbb{N}^{+}$. Using Lemma 2.27, we have that $g_{n}=n\left(f^{\frac{1}{n}}-1\right)$ is p-convex for all $n \in \mathbb{N}^{+}$. From Lemma 2.28, $\lim _{n \rightarrow \infty} g_{n}=\log f$ is p-convex. Hence f is log-p-convex.

References

[1] Adilov, G., Yeşilce, I. (2017). B^{-1}-convex Functions. Journal of Convex Analysis. 24(2): 505-517.
[2] Adilov, G., Yesilce, I. (2012). On Generalizations of The Concept of Convexity. Hacettepe Journal of Mathematics and Statistics. 41(5): 723730.
[3] Alirezaei, G., Mazhar, R. (2018). On exponentially concave functions and their impact in information theory. J. Inform. Theory Appl. 9(5): 265-274.
[4] Avriel, M. (1972). r-convex Functions. Mathematical Programming. 2: 309323.
[5] Breckner, W. W. (1978). Stetigkeitsaussagen für eine Klasse verallgemekterter konvexer Funktionen in topologischen linearen Raumen. Publ. Inst. Math. 23: 13-20.
[6] Briec, W., Horvath, C. (2004) B-convexity. Optimization. 53(2): 103-127.
[7] Kemali, S., Yesilce I., Adilov, G. (2015). B-Convexity, B^{-1}-Convexity and Their Comparison. Numerical Functional Analysis and Optimization. 36(2): 133-146.
[8] Noor, M. A., Noor, K. I. (2019) On Exponentially Convex Functions. Journal of Orissa Mathematical Society. 38: 33-51.
[9] Orlicz, W. (1961). A note on modular spaces I. Bull. Acad. Polon. Soi., Ser. Math. Astronom Phys. 9: 157-162.
[10] Pal, S., Wong, T. K. (2018). On exponentially concave functions and a new information geometry. Annals. Prob. 46(2): 1070-1113.
[11] Ponstein, J. (1967) Seven Kinds of Convexity. SIAM Review. 9(1): 115-119.
[12] Sezer, S., Eken, Z., Tinaztepe, G., Adilov, G. (2021). p-Convex Functions and Some of Their Properties. Numerical Functional Analysis and Optimization. 42(4): 443-459.
[13] Artin, E. (1931). Einführung in die Theorie der Gamma-funktion. Leipzig, Berlin: B.G. Teubner.
[14] Klinger, A., Mangasarian, O. L. (1968). Logarithmic convexity and geometric programming. Journal of Mathematical Analysis and Applications. 24(2): 388-408.
[15] Noor, M. A., Noor, K. I. (2021). Strongly log-Convex Functions. Information Sciences Letters 10(1): 33-38.
[16] Noor, M. A., Noor, K. I. (2020). New perspectives of log-convex functions. Applied Mathematics and Information Sciences 14(5): 847-854.
[17] Lara, T., Rosales, E. (2019). Log m-Convex Functions. Moroccan J. of Pure and Appl. Anal. 5(2): 117-124.
[18] Tunç, M. (2014). Some integral inequalities for logarithmically convex functions. Journal of the Egyptian Mathematical Society. 22: 177-181.
[19] Boche, H., Schubert, M. (2008). A Calculus for Log-Convex Interference Functions. IEEE Transactions on Information Theory. 54(12): 5469-5490.
[20] Quintanilla, R. (2000). Logarithmic convexity in thermoelasticity of type III. Fifth International Conference on Mathematical and Numerical Aspects of Wave Propagation. 192-196.
[21] Quintanilla, R. (2013). On the Logarithmic Convexity in Thermoelasticity with Microtemperatures. Journal of Thermal Stresses. 36(4): 378-386.
[22] Rydell, C. P. (1967). The Significance of Logarithmic Convexity for Price and Growth Theory. Western Economic Journal Oxford. 6(1): 65.
[23] Bayoumi, A., Fathy Ahmed, A. (2017). p-Convex Functions in Discrete Sets. International Journal of Engineering and Applied Sciences. 4(10): 6366.
[24] Sezer, S. (2021). Hermite-Hadamard Type Inequalities for the Functions Whose Absolute Values of First Derivatives are p-Convex. Fundamental Journal of Mathematics and Applications. 4(2): 88-99.
[25] Bastero, J., Bernues, J., Pena, A. (1995). The Theorems of Caratheodory and Gluskin for $0<p<1$. Proceedings of the American Mathematical Society. 23(1): 141-144.
[26] Bayoumi, A. (2003). Foundation of complex analysis in non locally convex spaces. North Holland: Elsevier.
[27] Eken, Z., Kemali, S., Tinaztepe, G., Adilov, G. (2021). The HermiteHadamard inequalities for p-convex functions. Hacet. J. Math. Stat. 50(5): 1-12.
[28] Kemali, S., Tinaztepe, G., Adilov, G. (2018). New Type Inequalities for B^{-1}-convex Functions involving Hadamard Fractional Integral. Facta Universitatis: Series Mathematics and Informatics. 33: 697-704.
[29] Tinaztepe, G., Sezer, S., Eken, Z., Adilov, G. (2021). Quasi p-Convex Functions. (submitted).

[^0]: * Vocational School of Technical Sciences Akdeniz University Antalya-Turkey email:gtinaztepe@akdeniz.edu.tr
 ${ }^{\dagger}$ Faculty of Education Akdeniz University Antalya-Turkey email:sevdasezer@akdeniz.edu.tr
 \ddagger Corresponding author, Faculty of Education Akdeniz University Antalya-Turkey email:zeynepeken@akdeniz.edu.tr
 §Faculty of Education Akdeniz University Antalya-Turkey e-mail:gabil@akdeniz.edu.tr

