Studies on sol-gel bonded inorganic based plates having expanded lightweight inclusions for improving energy efficiency


Yavuz E., KOÇKAL N. U., ERDEM R.

Construction and Building Materials, cilt.368, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 368
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.conbuildmat.2023.130355
  • Dergi Adı: Construction and Building Materials
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, CAB Abstracts, Communication Abstracts, INSPEC, Metadex, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Expanded glass, Expanded vermiculite, Expanded perlite, Plate, Sol-gel, Thermal conductivity, Fire resistance
  • Akdeniz Üniversitesi Adresli: Evet

Özet

Thermal insulation materials are a great solution to minimize energy consumption for construction applications. Especially, expanded inorganic lightweights are excellent candidates in terms of their low thermal conductivity and high fire resistance properties. Sol-gel type inorganic based binders are also useful chemical substances to combine lightweight particles. In current study, inorganic-based plates were developed by using expanded glass, expanded vermiculite, and expanded perlite particles with a novel tetraethoxysilan (TEOS)/methyltrimethoxysilane (MTMS) sol-gel binder. The chemical, physical, mechanical and thermal properties of the plates were examined comparatively to reveal the effect of expanded lightweight particle types in the plates. According to the experimental results, the compressive strength of the developed plates was between 7.04 ± 0.44 MPa and 3.15 ± 0.17 MPa whilst the direct tensile strength ranged from 0.486 ± 0.04 MPa and 0.079 ± 0.04 MPa, respectively. Furthermore, the long term water absorbency values of the plates on the 28th day varied between 9.96 ± 0.04 v% and 49.8 ± 0.8 v%. On the other hand, while the thermal conductivity coefficient of the plates at 25 °C ranged from 0.125 to 0.254 W/m.K, infrared reflectance properties were determined between 83.2 ± 0.5 % and 64.1 1.8 %. Besides, all inorganic-based plates exhibited high fire resistance performance (withstand temperatures of up to ∼900 °C for 30 min). The results demonstrated that utilizing expanded inorganic lightweight particles with TEOS/MTMS sol-gel binder could be a promising combination to construct energy saving insulating plates to overcome poor fire resistance properties of conventional organic materials.