Heat treatment effect on fatigue behavior of 3D-printed maraging steels


TEZEL T., KOVAN V.

RAPID PROTOTYPING JOURNAL, cilt.28, sa.1, ss.175-184, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 28 Sayı: 1
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1108/rpj-03-2021-0069
  • Dergi Adı: RAPID PROTOTYPING JOURNAL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Aerospace Database, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.175-184
  • Anahtar Kelimeler: Fatigue, Surface treatment, Steel, SLM, BUILD ORIENTATION, PERFORMANCE, STRENGTH, FRACTURE
  • Akdeniz Üniversitesi Adresli: Evet

Özet

Purpose This study aims to reveal that fatigue life is improved using heat treatment in the rotational bending fatigue test, which determines the fatigue behavior closest to service conditions. Design/methodology/approach It is essential to know the mechanical behavior of the parts produced by additive manufacturing under service conditions. In general, axial stress and plane bending tests are used by many researchers because they are practical: the service conditions cannot be sufficiently stimulated. For this reason, the rotating bending fatigue test, which represents the conditions closest to the service conditions of a load-bearing machine element, was chosen for the study. In this study, the rotational bending fatigue behavior of X3NiCoMoTi18-9-5 (MS1) maraging steel specimens produced by the selective laser melting (SLM) technique was experimentally investigated under various heat treatments conditions. Findings As a result of the study, MS1 produced by additive manufacturing is a material suitable for heat treatment that has enabled the heat treatment to affect fatigue strength positively. Cracks generally initiate from the outer surface of the sample. Fabrication defects have been determined to cause all cracks on the sample surface or regions close to the surface. Research limitations/implications While producing the test sample, printing was vertical to the print bed, and various heat treatments were applied. The rotating bending fatigue test was performed on four sample groups comprising as-fabricated, age-treated, solution-treated and solution + age-treated conditions. Originality/value Most literature studies have focused on the axial fatigue strength, printing orientation and heat treatment of maraging steels produced with Direct Metal Laser Sintering (DMLS); many studies have also investigated crack propagation behaviors. There are few studies in the literature covering conditions of rotating bending fatigue. However, the rotating bending loading state is the service condition closest to modern machine element operating conditions. To fill this gap in the literature, the rotating bending fatigue behavior of the alloy, which was maraging steel (X3NiCoMoTi18-9-5, 1.2709) produced by SLM, was investigated under a variety of heat treatment conditions in this study.