Neurocognitive responses to spatial design behaviors and tools among interior architecture students: a pilot study


Creative Commons License

Şekerci Y., Kahraman M. U., ÖZTURAN Ö., Çelik E., Ayan S. Ş.

Scientific Reports, cilt.14, sa.1, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 1
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1038/s41598-024-55182-7
  • Dergi Adı: Scientific Reports
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Chemical Abstracts Core, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Akdeniz Üniversitesi Adresli: Evet

Özet

The impact of emotions on human behavior is substantial, and the ability to recognize people's feelings has a wide range of practical applications including education. Here, the methods and tools of education are being calibrated according to the data gained over electroencephalogram (EEG) signals. The issue of which design tools would be ideal in the future of interior architecture education, is an uncertain field. It is important to measure the students’ emotional states while using manual and digital design tools to determine the different impacts. Brain-computer interfaces have made it possible to monitor emotional states in a way that is both convenient and economical. In the research of emotion recognition, EEG signals have been employed, and the resulting literature explains basic emotions as well as complicated scenarios that are created from the combination of numerous basic emotions. The objective of this study is to investigate the emotional states and degrees of attachment experienced by interior architecture students while engaging in their design processes. This includes examining the use of 2D or 3D tools, whether manual or digital, and identifying any changes in design tool usage and behaviors that may be influenced by different teaching techniques. Accordingly, the hierarchical clustering which is a technique used in data analysis to group objects into a hierarchical structure of clusters based on their similarities has been conducted.